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1 Laplace Transformation

f(t) F (s)

1 1
s

t 1
s2

t2 2
s3

tn, n ∈ Z ⩾ 0
n!

sn+1

f(t) F (s)

ta, a > 0
Γ(a+1)

sa+1

eat 1
s−a

cos(ωt) s
s2+ω2

sin(ωt) ω
s2+ω2

f(t) F (s)

cosh(at) s
s2−a2

sinh(at) a
s2−a2

u(t− a), a ⩾ 0 1
s e

−as

δ(t− a), a ⩾ 0 e−as

1.1 Definitionen

Sei f : [0,∞] → R, t → f(t) : F (s) = L (f)(s) =

∫ ∞

0

e
−st

f(t) dt

wobei f := inverse Laplace Transformation von F (s): f(t) := L −1(F (s))

Die Laplace-Transformierte existiert, wenn die Funktion f stückweise
stetig ist und das Wachstum der Funktion, sodass |f(t)| ≤ Mekt gilt,
eingeschränkt ist.

1.2 Linearität

L (αf(t) + βg(t)) = α · L (f(t)) + β · L (g(t))

wobei f , g Funktionen und α, β ∈ R Konstanten sind. Die Linearität gilt
auch für die inverse Laplace Transformation.

Beispiel: Laplace Transform

• Sei f(t) = 2t+ et

L (f) = L
(
2 · t+ 1 · et

)
= 2L (t) + L

(
e
t)

=
2

s2
+

1

s− 1

• Sei F (s) = 4
s5

L −1
(F ) = L −1

(
24

s5
·
1

6

)
=

1

6
L −1

(
24

s5

)
=

1

6
t
4

• Sei F (x) = a
bs+c , a, b, c ∈ R

F (s) =
a

bs+ c
=

a/b

s+ c/b
=

a/b

s− (−c/b)

L −1
(F ) = L −1

(
a
b

s−
(
− c

b

)) =
a

b
L −1

(
1

s−
(
− c

b

)) =
a

b
e
− c

b
t

1.3 Shifting Theorem (s-shifting)

Sei L (f)(s) = F (s), then: L (e
at · f(t)) = F (s− a)

1.4 LT von Ableitungen

Sei f ∈ Cn−1 (f ist n − 1-mal stetig differenzierbar) und f(n) stückweise
stetig, dann gilt:

L (f
n
)(s) = s

nL (f) −
n−1∑
j=0

s
n−1−j

f
j
(0)

für alle n ≥ 1:

L
(
f
′)

(s) = sL (f) − f(0)

L
(
f
′′)

(s) = s
2L (f) − sf(0) − f

′
(0)

L (f
′′′

)(s) = s
3L (f) − s

2
f(0) − sf

′
(0) − f

′′
(0)

1.5 Integration

L

∫ t

0

f(x) dx =
1

s
F (s)

1.6 t-shifting, Heaviside Funktion

If a ≥ 0, u(t− a) :=

{
1 if t > a

0 if t < a
L (u(t− a)) =

e−as

s

L (f(t− a)u(t− a)) = e
−as

F (s)

L (f(t)u(t− a)) = e
−asL (f(t+ a))

Tipps: Ergänzen & Erweitern, Periodizität und Additionstheoreme der
trigonometrischen Funktionen (Ch. 8.7 (S.13)). Zuerst s-shift und danach
t-shift.

Beispiel: t-shifting

• Sei f(t) = e2t · cos(ωt) ⇒ a = 2:

L(cos(ωt)) =
s

s2 + ω2
⇒ L (f)(s) =

s− 2

(s− 2)2 + ω2

Die Lösung für diese Art von Problem besteht darin, die Funktion
durch die Heaviside-Funktion u auszudrücken. In diesem Fall ist

• Löse das Anfangswertproblem

{
y′ − 5y = f(t)

y(0) = 1
für f(t) ={

3et, für 0 < t < 2

0, für t ≥ 2

Man wendet die übliche Vorgehensweise an: Zuerst findet man die
Laplace-Transformierte der linken Seite der Differentialgleichung

L(y
′ − 5y) = L(y

′
) − 5L(y) = sY − y(0) − 5Y = (s− 5)Y − 1.

Die gleiche Prozedur wird auf der rechten Seite durchgeführt:

L(f(t)) = 3L(e
t
) − 3L(e

t
u(t− 2))

=
3

s− 1
−

3e2−2s

(s− 1)
.

Die Lösung für Y (s) lautet

Y (s) = −
3

4
·

1

s− 1
+

3

4
·

1

s− 5
+

3e2

4

(
e−2s

s− 1
−
e−2s

s− 5

)
+

1

s− 5
.

Anwendung der inversen Laplace-Transformierten auf beiden Seiten
führt zu

y(t) = −
3

4
(e

t − e
5t − e

2
(u(t− 2)e

t−2 − u(t− 2)e
5(t−2)

) + e
5t
.

1.7 Dirac’s delta funktion

Für a ∈ [0,∞) gilt:

δ(t− a) :=

{
∞ t = a

0 t ̸= a∫ ∞

0

δ(t− a)dt = 1

∫ ∞

0

g(t)δ(t− a)dt = g(a) und: L (δ(t− a)) = e
−as

Beispiel:

• Sei f(t) = t
2
, dann ist f(t− a) = (t− a)

2, betrachte u(t− a)f(t− a)

L (u(t− a)f(t− a)) = e
−asL (f) = e

−as 2

s3

1



Beispiel:

• Sei die DGL y′′ − y′ + y = 0, y(0) = 0, y′(0) = 1

L
(
y
′′ − y

′
+ y
)
= L (0) = 0 = L

(
y
′′)− L

(
y
′)

+ L (y)

s
2L (y) − sy(0)︸ ︷︷ ︸

=0

− y
′
(0)︸ ︷︷ ︸

=1

−(sL (y) − y(0)︸︷︷︸
=0

) + L (y) = 0

L (y) =
1

s2 − s+ 1
=

1(
s− 1

2

)2
+ 3

4

=

√
4

3

√
3
4(

s− 1
2

)2
+
(√

3
4

)2

y = L −1
(L (y)) =

√
4

3
e
1
2
t
sin

(√
3

4
t

)

Beispiel:

• Sei F (s) = e−2s

s4
= e−2s 1

6

3

s4︸︷︷︸
=L(t3)

L −1
(F ) = L −1

(
e
−2 1

6

3

s4

)
=

{
1
6 (t− 2)3 t > 2

0 t < 2

1.8 Convolution (Faltung)

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ

Properties:

1. f ∗ g = g ∗ f

2. f ∗ (g + h) = f ∗ g + f ∗ h

3. f ∗ (g ∗ h) = (f ∗ g) ∗ h

4. f ∗ 0 = 0 ∗ f = 0

5. f ∗ 1 ̸= f

6. f ∗ f is not always ≥ 0

L (f ∗ g) = L (f) · L (g)

1.9 Ableitung der LT

Sei f stückweise stetig und beschränkt, dann gilt:

L (t
n
f(t)) = (−1)

n dn

dsn
[L (f)(s)]

L (tf(t)) = −L ′
(f) = −

d

ds
L (f)

L −1 (
F

′
(s)
)
= −tf(t)

1.10 Integral der LT

Existiert ferner limt→0+
f(t)
t , so gilt:

L

(
f(t)

t

)
=

∫ ∞

s

L (f)(σ)dσ

1.11 Lösen von DGL mit LT

1. DGL finden und LT anwenden (L (y) = Y )

⇒ Anfangsbedingungen einsetzen

y
′′
+ ay

′
+ by = r(t)(

s
2
Y − sy(0) − y

′
(0)
)
+ a(sY − y(0)) + bY = R(s)

2. Nach Y lösen(
s
2
+ as+ b

)
Y = R(s) + sy(0) + y

′
(0) + ay(0)

3. Inverse LT von L (y) berechnen
Falls Anfangsbedingungen so gegeben y(a), y′(a), . . . :

• Stubstituieren: t = t̃+ a

• y′′+ay′+by = r(t) ⇒ ỹ′′+aỹ′+bỹ = r(t̃+a) ỹ(0) = y(a), ỹ′(0) =

y′(a), . . .

• Normal lösen ⇒ Ỹ → ỹ(t̃)

• Rücksubstituieren: t̃ = t− a; ỹ(t̃) → y(t)

1.11.1 Partialbruchzerlegung

1. Nullstellen des Nenners finden → ni

2. A
x−x1

+ B
x−x2

+ . . .+ Z
x−xi

⇒ Komplexe NS zi&z̄i von x2 + pix+ qi : Bx+C

x2+pix+qi

4. Brüche so erweitern, dass alles wieder auf einem Bruchstrich Platz
hat.

5. Bestimmen der Konstanten A,B,C, . . . durch Koeffizientenvergleich

Beispiel: Convolution

• Sei t ∗ sin(t) =
∫ t

0
sin(τ)(t− τ)dτ

=
∫ t

0
(t · sin(τ) − τ · sin(τ))dτ = −t cos(τ) − sin(τ) + τ cos(τ)|t0

= −t cos(t) − sin(t) + t cos(t) + t = t− sin(t)

Beispiel: Lösen von DGL mit LT

• Sei y′ + y = δ(t− π) + u(t− 2π) sin(t), y(0) = 1

LHS: L
(
y′
)
+ L (y) = sL (y) − 1 + L (y) = L (y)(s+ 1) − 1

RHS: = e−πs + e1πs 1
s2+1

y = L −1

(
e−πs 1

s2+1
+ e−2πs 1

(s2+1)(s+1)
+ 1

s+1)

)
= u(t − π)e

−(t−π)
+ u(t − 2π)

1

2
(sin(t − 2π) − cos(t − 2π) + e

−(t−2π)
) + e

−t

= e
−t

+ u(t − π)e
π
e
−t

+ u(t − 2π)
1

2

(
sin(t) − cos(t) + e

2π
e
−t

)

Beispiel: Basic Laplace Transform

• Finde L
(

sin(t)
t

)
, schreibe f(t) = sin(t)

Prüfe: limt→0
sin(t)

t = limt→0
cos(t)

1 = 1

Dann folgt: L
(

sin(t)
t

)
=
∫∞
s

L (sin)(σ)dσ =
∫∞
s

1
σ2+1

dσ

= arctan(σ)|∞s =
π

2
− arctan(s)

f(t) L f(t) = F (s)

1
1

s
(1)

eatf(t) F (s− a) (2)

U(t− a)
e−as

s
(3)

f(t− a)U(t− a) e−asF (s) (4)

δ(t) 1 (5)

δ(t− a) e−sa (6)

dn

dtn δ(t) sn (7)

tnf(t) (−1)n
dnF (s)

dsn
(8)

(−t)nf(t) Fn(s) (9)

−tf(t) F ′(s) (10)

t2f(t) F ′′(s) (11)

f ′(t) sF (s) − f(0) (12)

fn(t) snF (s) − s(n−1)f(0)−

· · · − f(n−1)(0) (13)∫ t

0

f(x)g(t− x)dx F (s)G(s) (14)

tn (n = 0, 1, 2, . . . )
n!

sn+1
(15)

tx (x ≥ −1 ∈ R)
Γ(x+ 1)

sx+1
(16)

sin kt
k

s2 + k2
(17)

cos kt
s

s2 + k2
(18)

sin2 kt
2k2

s(s2 + 4k2)
(19)

cos2 kt
s2 + 2k2

s(s2 + 4k2)
(20)

eat 1

s− a
(21)

2



1 − eat a

s(s+ a)
(22)

sinh kt
k

s2 − k2
(23)

cosh kt
s

s2 − k2
(24)

eat − ebt

a− b

1

(s− a)(s− b)
(25)

aeat − bebt

a− b

s

(s− a)(s− b)
(26)

teat 1

(s− a)2
(27)

tneat n!

(s− a)n+1
(28)

eat sin kt
k

(s− a)2 + k2
(29)

eat cos kt
s− a

(s− a)2 + k2
(30)

eat sinh kt
k

(s− a)2 − k2
(31)

eat cosh kt
s− a

(s− a)2 − k2
(32)

t sin kt
2ks

(s2 + k2)2
(33)

t cos kt
s2 − k2

(s2 + k2)2
(34)

t sin kt cos kt
ks

(s2 + k2)2
(35)

t sinh kt
2ks

(s2 − k2)2
(36)

t cosh kt
s2 − k2

(s2 − k2)2
(37)

sin at

t
arctan

a

s
(38)

sin at · f(t)
1

2i
(F (s− ia) − F (s+ ia)) (39)

cos at · f(t)
1

2
(F (s− ia) + F (s+ ia)) (40)

sinh at · f(t)
1

2
(F (s− a) − F (s+ a)) (41)

cosh at · f(t)
1

2
(F (s− a) + F (s+ a)) (42)

ln(at)kt
−1

s
(ln( s

a ) + γ) (43)

1
√
πt
e−a2/4t e−a

√
s

√
s

(44)

a

2
√
πt3

e−a2/4t e−a
√

s (45)

∫ t

0

f(u)du 1
sn F (s)n ≥ 1 (46)

∫ t

0

f
(t− q)n−1f(q)

(n− 1)!
dq 1

sF (s) (47)

∫ t

0

f(u)du 1
sn F (s)n ≥ 1 (48)

1
t f(t)

∫ ∞

s

f(u)du (49)

Convolution Product Formula:

e
at ∗ eat

=
eat − ebt

a− b

2 Fourier

2.1 Periode p

Eine Funktion f(x) ist periodisch, wenn
a) f für genügend viele x ∈ R definiert ist und
b) eine Periode p ∈ R, p > 0 existiert, so dass f(x) = f(x+ p) für alle x.
Eigenschaften: Sei f(x) = f(x+ p) ⇒ f(a · x) ist p

a -periodisch

1. Falls f(x) periodisch ist und stetig, dann ist f(x) begrenzt.

2. Falls f(x) periodisch ist und glatt, dann ist f(x) und f(n)(x) begrenzt.
Hierbei haben beide Funktionen die gleiche Periode.

3. Falls f(x) oder f(n)(x) nicht begrenzt sind, so sind f(x) und f(n)(x)

nicht periodisch.

4. Die Funktion f(t) = g(t) + h(t) ist periodisch, wenn pg
ph

∈ Q

pf =
kgV (pg,ph)

ggT (pg,ph)
.

2.2 Dirichlet Theorem

Bei Unstetigkeiten f
(
x−) ̸= f

(
x+
)

konvergiert die Fourier Reihe zu:

1
2

(
f
(
x−
0

)
+ f

(
x+
0

))
= f (x0)

2.3 Fourier-Reihe

Damit die Fourier-Reihe gegen f(x) konvergiert, muss f(x) auf dem
ganzen Intervall definiert sein und für jede Unstetigkeit x0 im Intervall muss
das Dirichlet Theorem (2.2) gelten. Konst.: a0, an, bn ∈ R, Periode: p = 2L.

f(x) = a0 +

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sin

(nπ
L
x
)]

a0 =
1

2L

∫ L

−L

f(x)dx

an =
1

L

∫ L

−L

f(x) cos
(nπ
L
x
)
dx, wenn n > 0

bn =
1

L

∫ L

−L

f(x) sin
(nπ
L
x
)
dx, wenn n > 0

Tipps: Orthogonalität (Ch. 8.5 (S.11)), Parität (Ch. 8.3 (S.11)), Koeffizien-
tenvergleich und Partielle Integration

Beispiel: Fourier-Reihe

• Berechnen der Fourier-Reihe der Funktion f(x) = π − x mit Periode
2π definiert auf (−π, π) ⇒ 2π = p = 2L → L = π

a0 =
1

2π

∫ π

−π

(π − x)dx =
1

2π

(
πx−

x2

2

)∣∣∣∣π
−π

= π

an =
1

π

∫ π

−π

(π − x) cos
(πn
π
x
)
dx =

1

π

∫ π

−π

π cos(nx)dx

−
1

π

∫ π

−π

x cos(nx)dx = 0

bn =
1

n

∫ π

−π

(π − x) cos
(πx
π
x
)
dx = . . . =

2 cos(nπ)

n

⇒ f(x) = π +

∞∑
n=1

2 cos(nπ)

n
sin(nx)

• Sei f 2-periodisch

{
e
1− 1

x2 0 < x < 1
2

x2+1
−1 < x < 0

f
(
1
+
)

= f
(
1
−
)

= 1 ; f
(
−1

+
)

= f
(
−1

−
)

= 1

f
(
0
+
)

= 0, f
(
0
−
)

= 2 ⇒ f(0) =
1

2
(0 + 2) = 1

2.3.1 Gerade (even) Funktionen

Fourier-Reihe für gerade (f(x) = f(−x), ∀x ∈ D) Funktion f :

f(x) = a0 +

∞∑
n=1

[
an cos

(πn
L
x
)]

bn = 0, a0 =
1

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
(πn
L
x
)
dx

Zusatz: f(a · x) =
1

a

∫ ∞

0

A
(ω
a

)
· cos(ωx) dω

3



2.3.2 Ungerade (odd) Funktionen

Fourier-Reihe für ungerade (f(x) = −f(−x), ∀x ∈ D) Funktion f :

f(x) =

∞∑
n=1

[
bn sin

(πn
L
x
)]

a0 = an = 0, bn =
2

L

∫ L

0

f(x) sin
(πn
L
x
)
dx

2.4 Expansion

Sei f definiert auf dem Intervall (0, L) und x ∈ R

Beispiel: Fourier-Reihe: Erweiterung gerade Funktion

• Erweitere 2x auf (0, 1) zu einer geraden 2-periodischen Funktion und

finde die Fourier-Reihe. Sei fg :=

{
2x x ∈ (0, 1)

−2x x ∈ (−1, 0

bn = 0 ; a0 =

∫ 1

0

2xdx = 1

an = 2

∫ 1

0

2x cos(nπx)dx = 4

(
x
sin(nπx)

πn

)∣∣∣∣1
0

−
∫ 1

0

sin(πnx)

nπ
dx

= 4
sin(πn)

πn︸ ︷︷ ︸
=0

+ 4
cos(πnx)

π2n2

∣∣∣∣1
0

= 4
cos(nπ) − 1

π2n1
= 4

(−1)n − 1

π2n2

f(x) = 1 +

∞∑
k=1

−8

π2

1

(2k − 1)2
cos((2k − 1)πx) (n = 2k − 1)

2.5 Komplexe Fourier-Reihe

Sei f 2L-periodisch, dann ist die komplexe Fourier-Reihe gegeben als:

f(x) = c0 +

∞∑
n=−∞
n ̸=0

cn · e
iπn
L

x

cn =
1

2L

∫ L

−L

f(x) · e−
iπn
L

x
dx; c0 =

1

2L

∫ L

−L

f(x) dx

a0 = c0; an = cn + c−n; bn = i (cn − c−n)

c0 = a0; cn = 1/2 · (an − ibn); c−n = 1/2 · (an + ibn)

e
ix

+ e
−ix

= 2 cos(x); e
ix − e

−ix
= 2i sin(x)

Tipps: Euler-Beziehungen (Ch. 8.9 (S.13) & Ch.2.9 (S.4))

2.6 Minimum square error

Der minimale quadratische Fehler eines trigonometrischen Polynomes N-
ten Grades auf dem Intervall [−π, π] ist:

E
∗
=

∫ π

−π

f
2
(x) dx− π

(
2a

2
0 +

N∑
n=1

(
a
2
n + b

2
n

))

2.7 Absolut integrabel

Eine Funktion f ist absolut integrabel, wenn gilt:
∫∞
−∞ |f(x)|dx < ∞

2.8 Fourier Integral

Sei f stückweise stetig in jedem endlichen Interval, absolut integrabel
und mit Links- und Rechtsableitungen an jeder Unstetigkeit.
Dann ist sein Fourier-Integral:

f(x) =

∫ ∞

0

(A(ω) cos(ωx) + B(ω) sin(ωx)) dω

A(ω) =
1

π

∫ ∞

−∞
f(v) cos(ωv) dv

B(ω) =
1

π

∫ ∞

−∞
f(v) sin(ωv) dv

2.8.1 Gerade (even) Funktion

Ist f gerade, so gilt: f(x) =

∫ ∞

0

A(ω) cos(ωx) dω

A(ω) =
2

π

∫ ∞

0

f(v) cos(ωv) dv ; B(ω) = 0

2.8.2 Ungerade (odd) Funktion

Ist f ungerade, so gilt: f(x) =

∫ ∞

0

B(ω) sin(ωx) dω

A(ω) = 0 ; B(ω) =
2

π

∫ ∞

0

f(v) sin(ωv) dv

2.9 Fourier Transformation

Sei f absolut integrabel, dann ist die Fourier Transformation von f :

f̂(ω) = F(f)(ω) =
1

√
2π

∫ ∞

−∞
f(t)e

−iωt
dt

Tipps: Euler-Beziehungen (Ch. 8.9 (S.13)),davon meist benötigten Formeln
finden Sie hier:

e
±ix

= cos(x) ± i · sin(x)

e
iπ

= −1

e
±iπ·n

= −1
n

Eigenschaften:

1. F(αf + βg) = αF(f) + βF(g)

2. Sei f stetig auf ganz R und limx→−∞ f(x) = 0 = limx→∞ sowie
f ′ (bzw. f ′′) absolut integrabel, so gilt:

F
(
f
′
(x)
)
= iωF(f(x))

F
(
f
′′
(x)
)
= −ω2F(f(x))

F (xf(x)) = i
d

dω
F(f(x))

F
(
x
2
f(x)

)
= −F′′

(f(x))

3. Sei f, g stückweise stetig sowie beschränkt und absolut integrabel,
so ist

F(f ∗ g) =
√
2π · F(f) · F(g)

F(f) ∗ F(g) =
√
2π · F(f · g)

4. Weitere nützliche Transformationen:

F (ut) =
∂

∂t
û(ω, t)

F
(
t
2
ux

)
= t

2F (ux)

F
(
xe

−ax2
)
(ω) =

−iω
(2a)3/2

e

(
−ω2

4a

)

F−1
(
−iωe−bω2

)
=

x

(2b)3/2
e

(
− x2

4b

)

x-Shift

F(f(x− a)) = e
−iaωF(f(x)) = e

−iaωF(ω)

ω-Shift

F(ω − a) = F
(
e
iax

f(x)
)

2.9.1 Nützliche Integrale

•
∫ ∞

−∞
e
−x2

dx =
√
π

•
∫ ∞

−∞

1

1 + x2
dx = π

•
∫ ∞

−∞
e
−ax2

e
−ikx

dx = e
− k2

4a

√
π

a

•
∫ ∞

−∞
e
−

(
ak2+bk+c

)
dk = e

b2

4a
−c

√
π

a

2.10 Inverse Fourier Transformation

Die inverse Fourier Transformation von g ist:

F−1
(g)(x) =

1
√
2π

∫ ∞

−∞
g(ω)e

iωx
dω

4



Es gilt, wenn g = F(f):
F−1

(F(f)) = f

Beispiel: Fourier Transformation

Sei f(x) =

{
e−x x ∈ (0, 1)

0 sonst

f̂(ω) =
1

√
2π

∫ ∞

−∞
f(x)e

−iωx
dx =

1
√
2π

∫ 1

0

e
−x
e
−iωx

=
1

√
2π

∫ 1

0

e
−(1+iω)x

dx =
1

√
2π

e−(1+iω)x

−(1 + iω)

∣∣∣∣∣
1

0

=
1 − e−(1+iω)

1 + iω

2.11 Diskrete Fourier-Transformation (DFT)

Definition: Die Funktion f(t) kann als Summe von komplexen Exponen-
tialfunktionen geschrieben werden: f(t) = c0 + c1e

it + c2e
2it + · · · +

cn−1e
(n−1)it, wobei die ck die Fourier-Koeffizienten sind. Diese Form lässt

sich durch eulersche Identitäten weiter vereinfachen.
Die DFT transformiert N diskrete Werte {f0, f1, . . . , fN−1} in N Frequen-
zwerte {c0, c1, . . . , cN−1}. Die Formel lautet:

ck =
1

N

N−1∑
j=0

fj · w−jk
N , wN = e

i 2π
N .

Matrixform: C = M−1 ·F , wobei M−1 die inverse Fourier-Matrix ist, deren
Einträge (M−1)jk = 1

N w
−jk
N sind mit wN = e2πi/N .

Beispiel: Diskrete Fourier Transformation

Die Inverse der Fourier-Matrix für N = 4 mit w4 = e2πi/4 = i ist:

M
−1

=
1

N


w0

4 w0
4 w0

4 w0
4

w0
4 w−1

4 w−2
4 w−3

4

w0
4 w−2

4 w−4
4 w−6

4

w0
4 w−3

4 w−6
4 w−9

4

 =
1

4
·


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 .
Gegeben F = {2, 0, 6, 4}, berechnen wir :

C = M
−1 · F =

1

4
·


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 ·


2

0

6

3

 =
1

4
·


11

−4 + 3i

5

−4 − 3i

 .

2.12 Inverse Diskrete Fourier-Transformation (IDFT)

Definition: Die IDFT transformiert N Frequenzwerte {c0, c1, . . . , cN−1}
zurück in N diskrete Werte {f0, f1, . . . , fN−1}. Die Formel lautet:

fj =

N−1∑
k=0

ck · wjk
N , wN = e

i 2π
N .

Matrixform: F = M · C, wobei M die Fourier-Matrix ist, deren Einträge
Mjk = wjk

N sind mit wN = e2πi/N .
Tipp: Die Fourier-Matrix und ihre Inverse sind symmetrisch. Die Inverse
kann durch komplexe Konjugation erhalten werden, wobei der Vorfaktor
1
N beachtet werden muss.

2.13 Fast Fourier-Transformation (FFT)

Definition: Die FFT ist ein Algorithmus zur Berechnung der Diskreten Fourier-
Transformation (DFT). Sie reduziert die Komplexität der Berechnung von
O(N2) auf O(N logN).
Algorithmus: Angenommen, wir haben N diskrete Werte
{f0, f1, . . . , fN−1}. Die Schritte zur Berechnung der FFT sind wie folgt:

1. Bestimme den Wert von wM , wobei M = N
2 und wM = ei

2π
M .

2. Berechne die geraden und ungeraden Koeffizienten C(o) und C(e)

unter Verwendung der Formeln

C
(o)

=

[
c
(o)
0

c
(o)
1

]
= M

−1
2 f

(o)
, und C

(e)
=

[
c
(e)
0

c
(e)
1

]
= M

−1
2 f

(e)

wobei f(e) und f(o) die Vektoren der ungeraden und geraden Indizes
von f sind.
3. Bestimme den Wert von wN = ei

2π
N .

4. Berechne die Koeffizienten ck für k < M mit

ck =
1

2

(
c
(o)
k + w

−k
N c

(e)
k

)
,

und für die Koeffizienten ck+M mit k ≥ M

ck+M =
1

2

(
c
(o)
k − w

−k
N c

(e)
k

)
.

Beispiel: Fast Fourier Transform mit N = 4

Wir berechnen die FFT für N = 4 diskrete Werte {f0, f1, f2, f3}. Die
Schritte sind wie folgt:
1. Wir haben N = 4 und M = N

2 = 2, daher ist w = wM = ei
2π
2 =

eiπ = −1.
2. Bezeichnen wir F =

[
f0 f1 f2 f3

]T . Folglich erhalten wir

C
(o)

= M
−1
2 f

(o)
=

1

2

[
1 1

1 −1

] [
f0
f2

]
=

1

2

[
f0 + f2
f0 − f2

]
,

C
(e)

= M
−1
2 f

(e)
=

1

2

[
1 1

1 −1

] [
f1
f3

]
=

1

2

[
f1 + f3
f1 − f3

]
.

3. Für N = 4 ist wN = ei
2π
4 = ei

π
2 = i.

4. Die Koeffizienten ck für k < 2 sind

c0 =
1

2

(
c
(o)
0 + w

0
Nc

(e)
0

)
=

1

2

(
f0 + f2

2
+
f1 + f3

2

)
,

c1 =
1

2

(
c
(o)
1 + w

−1
N c

(e)
1

)
=

1

2

(
f0 − f2

2
− i

f1 − f3

2

)
und die Koeffizienten ck+M für k ≥ 2 sind

c2 =
1

2

(
c
(o)
0 − w

0
Nc

(e)
0

)
=

1

2

(
f0 + f2

2
−
f1 + f3

2

)
,

c3 =
1

2

(
c
(e)
1 − w

1
Nc

(o)
1

)
=

1

2

(
f0 − f2

2
− i

f1 − f3

2

)
.

Unter Verwendung der gegebenen numerischen Werte F =[
f0 f1 f2 f3

]T
=
[
2 0 6 3

]T , könnte man noch C =[
c0 c1 c2 c3

]T
=
[
11
4 −1 − 3

4 i
5
4 −1 + 3

4 i
]T berechnen.

2.14 Inverse Fast Fourier-Transformation (IFFT)

Definition: Die Inverse Fast Fourier-Transformation (IFFT) ermöglicht es,
aus den Frequenzkoeffizienten {c0, c1, . . . , cN−1} die ursprünglichen
diskreten Werte {f0, f1, . . . , fN−1} effizient zu rekonstruieren.
Algorithmus: Angenommen, wir haben N Frequenzkoeffizienten
{c0, c1, . . . , cN−1}. Die Schritte zur Berechnung der IFFT sind wie folgt:

1. Bestimme den Wert von wM , wobei M = N
2 und wM = ei

2π
M .

2. Berechne die geraden und ungeraden Koeffizienten F (e) und F (o)

unter Verwendung der Formeln

F
(e)

=

[
f
(e)
0

f
(e)
1

]
= M2c

(e)
, und F

(o)
=

[
f
(o)
0

f
(o)
1

]
= M2c

(o)
,

wobei c(e) und c(o) die Vektoren der ungeraden und geraden Indizes von
C sind.
3. Bestimme den Wert von wN = ei

2π
N .

4. Berechne die Koeffizienten fk für k < M mit

fk =
(
f
(o)
k + w

k
Nf

(e)
k

)
,

und für die Koeffizienten fk+M mit k ≥ M

fk+M =
(
f
(o)
k − w

k
Nf

(e)
k

)
.

3 PDEs

Eine partielle DGL (PDE) ist eine Gleichung, in welcher eine Funktion u

sowie einige partielle Ableitung von u involviert sind.

• Linear: falls u und die partiellen Ableitungen mit Grad = 1 (Potenz)
erscheinen und nicht miteinander multipliziert werden. z.b. linear:
uxy + uz + utt = g(x, y, t)

z.b. non-linear: uxy · uz + utt = g(x, y, t)

• Homogen: wenn sie linear ist und wenn jeder Term u oder eine par-
tielle Ableitung enthält.

• Ordung: die maximale Ordnung aller involvierten Ableitungen.

• Dimension: number of space variables

3.1 Wichtige PDEs

• Eindimensionale Wellengleichung:

∂2u

∂t2
= c

2 ∂
2u

∂x2

(linear, 2.Ordnung, homogen, hyperbolisch)

• Eindimensionale Wärmegleichung:

∂u

∂t
= c

2 ∂
2u

∂x2

(linear, 2.Ordnung, homogen, parabolisch)

• Zweidimensionale Laplacegleichung:
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∂2u

∂x2
+
∂2u

∂y2
= 0

(linear, 2. Ordnung, homogen, elliptisch)

• Zweidimensionale Poissongleichung:

∂2u

∂x2
+
∂2u

∂y2
= f(x, y)

(linear, 2.Ordnung, inhomogen, elliptisch)

• Zweidimensionale Wellengleichung:

∂2u

∂t2
= c

2

(
∂2u

∂x2
+
∂2u

∂y2

)
(linear, 2.Ordnung, homogen, hyperbolisch)

• Zweidimensionale Wärmegleichung:

∂u

∂t
= c

2

(
∂2u

∂x2
+
∂2u

∂y2

)
(linear, 2.Ordnung, homogen, parabolisch)

• Dreidimensionale Laplacegleichung

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

(linear, 2.Ordnung, homogen, elliptisch)

3.2 Lineare PDE 2.Ordnung

Eine lineare PDE 2.Ordnung kann man in die Form

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy)

Eine lineare PDE 2.Ordnung heisst

• hyperbolisch, falls AC − B2 < 0

• parabolisch, falls AC − B2 = 0

• elliptisch, falls AC − B2 > 0

• mixed type, falls je nach Vorzeichen anders

Beispiel: PDE 2. Ordnung

• Sei u(x, y) = x sin(x+ 2y), zeige: u löst u+ uxx = 1
xuy

ux = sin(x+ 2y) + x cos(x+ 2y)

uxx = cos(x+ 2y) + cos(x+ 2y) − x sin(x+ 2y)

uy = 2x cos(x+ 2y)

⇒ u+ uxx = 2 cos(x+ 2y)
!
=

2x cos(x+ 2y)

x
=
uy

x

3.3 Eindimensionale Wellengleichung

Für eine eindimensionale Wellengleichung der Form utt = c2uxx und den
Randbedingungen, x ∈ [0, L] u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

finden wir eine allgemeine Lösung:

u(x, t) =

∞∑
n=1

(
Bn cos (λnt) + B

∗
n sin (λnt)

)
sin
(πn
L
x
)

(1)

λn =
cnπ

L
(2)

f(x) =

∞∑
n=1

Bn sin
(nπ
L
x
)

(3)

g(x) =

∞∑
n=1

B
∗
nλn sin

(nπ
L
x
)

(4)

Bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx (5)

B
∗
n =

2

Lλn

∫ L

0

g(x) sin
(nπ
L
x
)
dx (6)

3.3.1 Vorgehen 1

• Berechne λn mit (2)

• Bestimme Bn mit (3)
wenn das nicht funktioniert, benutze (5)

• Bestimme B∗
n mit (4)

wenn das nicht funktioniert, benutze (6)

• Setze alle in (1) ein

Beispiel: Vorgehen 1: Eindimensionale Wellengleichung

• Löse für L = π:


utt = 4uxx

u(0, t) = u(L, t) = 0

u(x, 0) = sin(x)

ut(x, 0) = 0

c = 2 & mit (2) λn = 2n. Mit (3) finden wir nichts ⇒ mit (5):

Bn =
2

π

∫ π

0

sin(x) sin(nx) =
1

π

∫ π

0

(cos((1 − n)x) − cos((1 + n)x))dx

=
1

π

(
sin((1 − n)x)

1 − n
−

sin((1 + n)x)

1 + n

)∣∣∣∣π
0

= 0, für n ≥ 2

Mit (3) folgt:

f(x) = sin(x) =

∞∑
n=1

Bn sin
(nπ
L
x
)

= B1 sin(x) ⇒ B1 = 1

Aus (4) sehen wir direkt, dass B∗
n = 0

⇒ u(x, t) = B1 cos (λnt) sin
(nπ
L
x
)

= cos(2t) sin(x)

3.3.2 Vorgehen 2: Separation der Variabeln

u(x, t) = F (x)G(t)

utt = FG̈; uxx = F
′′
G → FG̈ = c

2
F

′′
G

G̈

c2G
=
F ′′

F
= k;

{
F ′′ = kF

G̈ = c2kG

Randbedingungen finden:

u(0, t) = F (0)G(t) = 0∀t ≥ 0 ⇒ F(0) = 0

u(L, t) = F (L)G(t) = 0∀t ≥ 0 ⇒ F(L) = 0

⇒ u(x, t) = F (x)G(t)

Löse mit (1) Allgemeine Lösung:
F ′′(x)

F (x)
= −

G̈(t)

G(t)
= k

F(x) =


A1e

√
kx + A2e

−
√

kx k > 0

A1 cos(
√

|k|x) + A2 sin(
√

|k|x) k < 0

A1x+ A2 k = 0

G(t) =


B1e

√
kt + B2e

−
√

kt k > 0

B1 cos(
√

|k|t) + B2 sin(
√

|k|t) k < 0

B1t+ B2 k = 0

Beispiel: Vorgehen 2: Separation der Variabeln

• Finde eine Lösung u(x, t) der PDF 1
2ux + ut = 0.

Mit dem Ansatz u(x, t) = F (x)G(t) folgt:

1

2
F

′
(x)G(t) + F (x)Ġ(t) = 0

1

2

F ′(x)

F (x)
+
Ġ(t)

G(t)
= 0

∀x, t :
F ′(x)
2F (x)

=
Ġ(t)

G(t)
= konst = λ

1

2F (x)

dF

dx
= λ ⇒

dF

F
= 2λ dx

⇒ F (x) = e
2λx

C1 G(t) = C2e
−λt

u(x, t) = F (x)G(t) = C1e
2λx

C2e
−λt

= Ce
λ(2x−t)

3.4 Eindimensionale Wellengleichung - d’Alembert

Sei utt = c2uxx mit folgenden Nebenbedingungen (Cauchy Problem):
utt = c2uxx, x ∈ R, t > 0

u(x, 0) = f(x), x ∈ R
ut(x, 0) = g(x), x ∈ R

Die Alembert-Lösung ist dann gegeben als:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct

g(s)ds
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Beispiel: Eindimensionale Wellengleichung - d’Alembert

• Sei utt = uxx mit u(x, 0) = 1
x2+1

und ut(x, 0) = −1

Die D’Alembertsche Lösung ist mit c = 1 dann

u(x, t) =
1

2

(
1

(x+ t)2 + 1
+

1

(x− t)2 + 1

)
+

1

2

∫ x+t

x−t

(−1)ds

=
1

2

(
1

(x+ t)2 + 1
+

1

(x− t)2 + 1

)
− t

3.5 Normalform

Mit geeigneter Substitutionen kann eine PDE zweiter Ordnung in
Normalform gebracht werden, d.h.:

uvw = F (v, w, u, uv, uw) hyperbolisch
uvv = F (v, w, u, uv, uw) parabolisch

uvv + uww = F (v, w, u, uv, uw) elliptisch

3.5.1 Vorgehen

Gegeben PDE zweiter Ordnung in {x, y}

• Bestimme A,B,C und die zwei Lösungen der charakteristischen Gle-
ichung A

(
y′
)2 − 2By′ + C = 0

• Nun kann man die ODE nach der Steigung y′ auflösen und erhält:

y′ = B±
√

B2−AC
A = λ1,2

• Da A,B und C Konstanten sind, erhalten wir eine gewöhliche DGL
mit zwei verschiedene Lösungen: ϕ(x, y) = C1 = y1 −1 ·x, ψ(x, y) =

c2 = y2 −2 ·x

• ϕ(x, y) und ψ(x, y) werden als Charakter.istiken bezeichnet. Nun
können zwei neue Variablen v,w definiert werden. Hierbei ist u =

Die Definition ist für jeden Typ von PDE unterschiedlich (siehe unten)

• Berechne die Ableitungen der ursprünglichen Gleichung mit v und
w. Die Kettenregel ist hier extrem wichtig. Sehr nützliche Ableitun-
gen für u = v(x, y) · w(x, y) sind weiter unten.

• Setze alles in die PDE ein und erhalte die Normalform

• Integriere entsprechend und substituiere zurück, um die allgemeine
Lösung zu erhalten

hyperbolisch: v = φ(x, y) w = ψ(x, y)

parablisch: v = x w = ψ(x, y)

elliptisch: v = 1
2 [φ(x, y) + ψ(x, y)] w = 1

2 [φ(x, y) − ψ(x, y)]

ux = uv · vx + uw · wx,

uy = uv · vy + uw · wy,

uxx = uvv · v2x + uv · vxx + uww · w2
x + uw · wxx + 2vx · wx · uvw,

uyy = uvv · v2y + uv · vyy + uww · w2
y + uw · wyy + 2vy · wy · uvw,

uxy = uvv · vx · vy + uv · vxy + uww · wx · wy + uw · wxy

+ (vy · wx + vx · wy) · uvw.

Beispiel: Normalform

Bringe uxx + 2uxy = −4ey in Normalform und gib die allgemeine Lö-
sung an
A = B = 1, C = 0 → charakteristische Gleichung

(
y′
)2 − 2y′ = 0

Lösungen der char. Gleichung: y′1 = 0 und y′2 = 2

Fall 1 : y′ = 0 → dy = 0dx ⇒ y = C1

Fall 2 : y′ = 2 → dy = 2dx ⇒ y = 2x+ C2 → C2 = y − 2x

v = C1 = y und w = C2 = y − 2x

Vorbereitung: vx = 0; vy = 1;wx = −2;wy = 1

ux =
du

dx
=
du

dv

dv

dx
+
du

dw

dw

dx
= uvvx + uwwx = −2uw

uxx = −2uwvvx − 2uwwwx = 4uww

uxy = −2uwvvy − 2uwwwy = −2uwv − uww

F = −4e
y
= −4e

v

uww + 2 (−2uwv − 2uww) = −4e
v ⇒ uwv = e

v (Normalform)

u(v, w) =

∫∫
uwvdwdv =

∫∫
e
v
dwdv =

∫ [
w · ev + φ̃(v)

]
dv

= w · ev + φ(v) + ψ(w)

⇒ u(x, y) = (y − 2x)e
y
+ φ(y) + ψ(y − 2x)︸ ︷︷ ︸

min. 2x stetig diff’bar

3.6 Wärmeleitungsgleichung (Heat equation)

3.6.1 Vorgehen 1:

Sei ut = c2uxx mit Randbediungungen u(0, t) = u(L, t) = 0 und
u(x, 0) = f(x) auf x ∈ [0, L]. Via Fourier-Reihe erhalten wir die Lösung:

u(x, t) =

∞∑
n=1

Bn sin
(nπ
L
x
)
e
−λ2

nt

λn =
cnπ

L
; Bn =

2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

⇒ Manchmal ist Bn auch über Koeffizientenvergleich bestimmbar!

3.6.2 Vorgehen 2:

Sei ut = c2uxx mit Randbedingungen ux(0, t) = ux(L, t) = 0 und
u(x, 0) = f(x) nur auf x ∈ (0, L) .

• Nimm den Ansatz u(x, t) = F (x)G(t), separiere F und G, bestimme
die Konditionen der Randbedingungen (der ODE für F und G )
durch Betrachten von ux.

• Löse die ODEs für F und G, setze sie zu un zusammen

• Verwende Superposition und schreibe

u(x, t) =

∞∑
n=0

un(x, t)

• Benutze weitere Randbedingungen und vergleiche Koeffizienten in
u mit denjenigen der Fourier-Reihe der 2L-periodischen geraden
Fortsetzung von f

Allgemeine Lösung

∞∑
n=0

an cos(nx)e
−c2n2t

3.7 Zeitunabhängige n-dim Wärmeleitungsgleichung

Die zeitunabhängige n-dimensionale Wärmeleitungsgleichung ut =

c2∆u = c2∇2u kann auf die n-dimensionale Laplacegleichung ∆u = 0

reduziert werden. Für n = 2, Randbedingungen u(0, y) = u(a, y) =

u(x, 0) = 0 und u(x, b) = f(x) mit (x, y) ∈ [0, a][0, b] sprechen wir vom
Dirichlet-Problem.

Dessen Lösung mit Separation und Superposition ist:

u(x, y) =

∞∑
n=1

An sin
(nπ
a
x
)
sinh

(nπ
a
y
)

An =
2

a sinh
(
nπ
a b
) ∫ a

0

f(x) sin
(nπ
a
x
)
dx

⇒ Manchmal ist An auch über Koeffizientenvergleich bestimmbar!

Beispiel: Zeitunabhängige n-dim Wärmeleitungsgleichung

• Sei ut = uxx auf x ∈ [0, 2π]

mit ux(0, t) = ux(π, t) = 0, u(x, 0) = x auf 0 < x < π

Mit u = F ·G erhalten wir
{

F ′′ = λF, Ġ = λG

F ′(0) = F ′(π) = 0

• λ > 0 allg. Lösung F (x) = Ae
√

λx + Be−
√

λx

Randbedingungen ergeben: A = B = 0 → uninteressant

• λ = 0: erhalten wir F (x) = 0 → uninteressant

• λ < 0: allg. Lösung F (x) = A cos(px) + B sin(px) wobei p =
√
−λ.

Mit F ′(0) = −Ap sin(0) + Bp cos(0) = 0 finden wir B = 0 und mit
F ′(π) = −Apsin(pπ) = 0 ⇒ p = pn = n

Unterdessen Ġ = −p2G und G(t) = C · e−p2t → Gn(t) = Cn · e−p2nt

• un(x, t) = Fn · Gn = An cos (pn)Gne
−p2nt =: Dn cos(nx)e−n2t und

u =
∑∞

n=0 un

• Weiter gilt u(x, 0) =
∑∞

n=0Dn cos(nx) = x. Koeffizienten der 2π-
periodischen Funktion:

D0 =
1

π

∫ π

0

xdx =
π

2

Dn = 2
π

∫ π

0
x cos(nx)dx = 2

πn2 ((−1)n − 1) =

{
0 n = 2m

−4 n = 2m+ 1

⇒ u(x, t) =
π

2
−

4

π

∞∑
m=0

1

(2x+ 1)2
cos((2m+ 1)x)e

(−2m+1)t
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3.8 Wärmeleitungsgleichung eines unendlichen Gebietes

Sei ut = c2uxx mit u(x, 0) = f(x) auf einem unendlichen Gebiet (x ∈
R, t ≥ 0). Dann ist die Lösung:
Vorgehen mit Fourier-Integral

u(x, t) =

∫ ∞

0

(A(p) cos(px) + B(p) sin(px))e
−c2p2t

dp

A(p) =
1

π

∫ ∞

−∞
f(v) cos(pv)dv

B(p) =
1

π

∫ ∞

−∞
f(v) sin(pv)dv

Bemerkung: Achte auf gerade/ungerade Funktionen

Vorgehen mit Fourier-Transformation
Sei ut = c2uxx mit F (uxx) = −ω2û , F (ux) = iωû und F (ut) = ∂

∂tF(u) =

ût können wir die Gleichung transformieren:

ût = −c2ω2
û

dann diese ODE für û lösen, die transformierte Anfangsbedingung ein-
setzen und u = F−1(û) bestimmen.

Bemerkung: F ist immer in Bezug auf x.

Vorgehen mit Formel:

u(x, t) =
1

2c
√
πt

∫ ∞

−∞
f(v) exp

[
−
(
x− v

2c
√
t

)2]
dv

Beispiel: Vorgehen mit Fourier-Integral

• Sei ut = uxx mit u(x, 0) =

{
2 0 < x ≤ π

0 sonst

A(p) =
1

π

∫ π

0

2 cos(pv)dv =
2

π

sin(pv)

p

∣∣∣∣π
0

=
2

πp
sin(pπ)

B(p) =
1

π

∫ π

0

2 sin(pv)dv =
2

π

− cos(pv)

p

∣∣∣∣π
0

=
2

πp
(1 − cos(πp))

⇒ u(x, t) =
2

π

∫ ∞

0

sin(pπ) cos(px) + (1 − cos(pπ) sin(px))

p
e
−p2t

dp

Beispiel: Vorgehen mit Fourier-Transformation/Formel

• Sei ut = 4uxx und u(x, 0) = f(x) =
√
2e−

x2

4

ût = −4ω2û und die allg. Lösung: û = C · e−4ω2t

Mit der Anfangsbedingung folgt û = û(ω, 0)e−4ω2t, nun û(ω, 0) = f̂ =

e−ω2
, somit ist û = e−ω2(1+4t) mit der Formel∫ ∞

−∞
e
−

(
ak2+bk+c

)
dk =

√
π

√
a
e

b2

4a
−c

folgt dann

u = F−1
(û) =

1√
2(1 + 4t)

e
−x2

4+16t

3.9 Dirichlet auf dem Kreis

Für die Laplace-Gleichung ∆u = 0 auf der geschlossenen Kreisscheibe
D mit Radius R und einer Randbedingung...

• ... u(R, θ) = f(θ) auf ∂D finden wir die Lösung

u(r, θ) = A0 +

∞∑
n=1

r
n
(An cos(nθ) + Bn sin(nθ))

Wir bestimmen An und Bn mit Koeffizientenvergleich oder sonst mit:

A0 =
1

2π

∫ 2π

0

f(ξ)dξ

An =
1

Rnπ

∫ 2π

0

f(ξ) cos(nξ)dξ, Bn =
1

Rnπ

∫ 2π

0

f(ξ) sin(nξ)dξ

• . . . ur(R, θ) = f(θ) auf ∂D gilt die Lösung

u(r, θ) = A0 +

∞∑
n=1

r
n
(An cos(nθ) + Bn sin(nθ))

mit An =
1

nRn−1π

∫ 2π

0

f(ξ) cos(nξ)dξ, Bn =
1

nRn−1π

∫ 2π

0

f(ξ) sin(nξ)dξ

und A0 ist eine nicht näher bestimmbare Konstante.

3.9.1 Bemerkungen

• Koordinatentransformationen

{
x = r cos(θ)

y = r sin(θ)
und

{
r =

√
x2 + y2

θ = arctan
(
y
x

)
• Die Laplace-Gleichung (für r ∈ [0, R), θ ∈ [0, 2π))

uxx + uyy = 0 wird zu urr +
1

r2
uθθ +

1

r
ur = 0

Beispiel: Dirichlet auf dem Kreis (Lösung auf dem Rand)

• Sei D =
{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
. Finde die Lösung der Laplace-

gleichung mit u(x, y) = 2x2 + y auf dem Rand (∂D)

u(x, y) = 2x
2
+ y = 2r

2
cos

2
(θ) + r sin(θ)

r≡1
= 2 cos

2
(θ) + sin(θ)

= (cos(θ) + 1) sin(θ)

u(1, θ) = f(θ) = 1 + cos(θ) + sin(θ)

!
=

∞∑
n=0

(An cos(nθ) + Bn sin(nθ))

→ A0 = 1, B1 = 1, A2 = 1 alle andern An, Bn = 0

u(r, θ) = 1 + r sin(θ) + r
2
cos(2θ)

Beispiel: Dirichlet auf dem Kreis (Lösung auf dem Kreis)

• Finde die Lösung der Laplacegleichung auf dem Kreis D mit R = 2

und ur(2, θ) = cos(3θ) auf ∂D.
Es gilt u(r, θ) = A0 +

∑∞
n=1

rn (An cos(nθ) + Bn sin(nθ)), also:

ur(r, θ) =

∞∑
n=1

nr
n−1

(An cos(nθ) + Bn sin(nθ))

ur(2, θ) =

∞∑
n=1

n2
n−1

(An cos(nθ) + Bn sin(nθ))
!
= cos(3θ)

→ Bn = 0, n = 3 → cos(3θ) = 3 · 23−1A3 cos(3θ)

⇒ A3 = 1
12 , An sonst = 0

u(r, θ) = A0 +
1

12
r
3
cos(3θ)

A0 ist nicht bestimmbar

3.10 Poisson-Integral-Form

• Sei ∆u = 0 und u(R, θ) = f(θ) auf dem Kreis mit Radius R. Dann ist die
Lösung mittels Poisson-Integral-Form gegeben als:

u(r, θ) =
1

2π

∫ 2π

0

K(r, θ, R, φ)f(φ) dφ

Poisson-Integral-KernK(r, θ, R, φ) =
R2 − r2

R2 − 2rR cos(θ − φ) + r2

Beispiel: Poisson-Integral-Form

Sei u(1, θ) = f(θ) = cos(3θ) auf dem Rand der abgeschlossenen Ein-
heitskreisscheibe. Finde den Funktionswert von u im Ursprung, ohne
die Lösung u explizit zu berechen:
Es gilt K(0, θ, R, φ) = 1. Poisson-Formel:

u(0, 0) = u(0, θ) =
1

2π

∫ 2π

0

K(0, θ, 1, φ)f(φ)dφ

=
1

2π

∫ 2π

0

cos(3φ)dφ =
1

6π
sin(3φ)

∣∣∣∣π
−π

= 0

3.11 Harmonische Funktionen

Eine Funktion, die die Laplace-Gleichungs ∆u = 0 auf D erfüllt, heisst
harmonisch auf dem Gebiet D.
Maximumsprinzip: Nimmt auf dem Gebiet D die harmonische Funktion u
ihr Maximum im Innern von D an, so ist sie konstant.
Somit genügt es, für eine harmonische Funktion auf D ihr Maximum nur
auf dem Rand ∂D zu suchen.
Ist u harmonisch auf der Kreissscheibe mit Radius R, so gilt der Mittelwert-
satz insbesondere in folgender Form:

f(0, 0) =
1

2πR

∫ 2π

0

f(R, θ)dθ

8



Beispiel: Harmonische Funktionen

• Finde das Maximum von f(x, y) = x+y auf der Einheitskreisscheibe.

f(r, θ) = r(cos(θ) + sin(θ)) → harmonisch, Suche auf Rand:

f(1, θ) = cos(θ) + sin(θ)

Ort des Maximums: ∂
∂θ f(1, θ) = cos(θ) − sin(θ) = 0 → θ = π

2 Das

Maximum ist bei
(
1, π

2

)
, respektive

(
1√
2
, 1√

2

)
und der Funktionswert

ist
√
2.

Randmaxima überprüfen! → wenn f auf [0, π] definiert ist muss man
0 und π anschauen.

3.12 Well-posed und ill-posed Probleme

Wir nennen ein Problem well-posed, falls:

• Das Problem hat eine Lösung. (Existence)

• Die Lösung ist eindeutig. (Uniqueness)

• Die Lösung ist von Anfangsbedingungen und Randbedingungen
abhängig. (Stability)

Ist eine dieser Bedingungen nicht erfüllt, ist das Problem ill-posed.

3.12.1 Das Neumann Problem auf Region D{
∆u = ∇2u = f auf D
∂u
∂n = g auf ∂D.

hat eine eindeutige Lösung wenn
∫
D
f =

∫
∂D

g.

Beispiel: Neumann problem

{
∇2u = f, in D2,
∂u
∂n = g, on ∂D2,

with D2 being the disk of radius 2 centered at 0 and f and g are two
given functions such that∫

D2

f(x) dx = 3, and
∫
∂D2

g(x) dx = 2.

Solution: There is no solution.

∫
D2

∇2
u(x) dx =

∫
D2

f(x) dx ⇒∫
D2

div(∇u(x)) dx =

∫
D2

f(x) dx ⇒∫
∂D2

∇u(x) · ndx =

∫
D2

f(x) dx ⇒∫
∂D2

∂u

∂n
dx =

∫
D2

f(x) dx ⇒∫
∂D2

g(x) dx =

∫
D2

f(x) dx ⇒ 2 ̸= 3.

4 Wellengleichung

utt = c
2
uxx

Separationsansatz: u(x, t) = X(x)T (t) ⇒
X′′

X
=

T̈

T c2
= α

4.1 α = 0

4.1.1 α = 0 ⇒ X′′ = 0

X(x) = Ax+ B

X
′
(x) = A

4.1.2 α = 0 ⇒ T̈ = 0

T (t) = Ct+D

Ṫ (t) = C

4.2 α > 0

4.2.1 α > 0 ⇒ X′′ − αX = 0

X(x) = Ae
√

αx
+ Be

−
√

αx

X
′
(x) =

√
αAe

√
αx −

√
αBe

−
√

αx

4.2.2 α > 0 ⇒ T̈ − αc2T = 0

T (t) = Ce
c
√

αt
+De

−c
√

αt

Ṫ (t) = c
√
αCe

c
√

αt − c
√
cαDe

−c
√

αt

4.3 α < 0 (am besten α = −p2, p ∈ R+ definieren)

4.3.1 α < 0 ⇒ α = −p2, X′′ + p2X = 0

X(x) = A sin(px) + B cos(px)

X
′
(x) = pA cos(px) − pB sin(px)

4.3.2 α < 0 ⇒ α = −p2, T̈ + p2c2T = 0

T (t) = C sin(pct) +D cos(pct)

Ṫ (t) = pcC cos(pct) − pcD sin(pct)

5 Wärmeleitgleichung

ut = c
2
uxx

Separationsansatz: u(x, t) = X(x)T (t) ⇒
X′′

X
=

Ṫ

T c2
= α

5.1 α = 0

5.1.1 α = 0 ⇒ X′′ = 0

X(x) = Ax+ B

X
′
(x) = A

5.1.2 α = 0 ⇒ Ṫ = 0

T (t) = C

Ṫ (t) = 0

5.2 α > 0

5.2.1 α > 0 ⇒ X′′ − αX = 0

X(x) = Ae
√

αx
+ Be

−
√

αx

X
′
(x) =

√
αAe

√
αx −

√
αBe

−
√

αx

5.2.2 α > 0 ⇒ Ṫ − αc2T = 0

T (t) = Ce
c2αt

Ṫ (t) = Cc
2
αe

c2αt

5.3 α < 0 (am besten α = −p2, p ∈ R+ definieren)

5.3.1 α < 0 ⇒ α = −p2, X′′ + p2X = 0

X(x) = A sin(px) + B cos(px)

X
′
(x) = pA cos(px) − pB sin(px)

5.3.2 α < 0 ⇒ α = −p2, Ṫ +
√
pc2T = 0

T (t) = Ce
−c2p2t

Ṫ (t) = −Cc2p2e−c2p2t
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6 Laplace-Gleichung

∇2
u = ∆u = ux1x1 + ux2x2 + ...

Seperationsansatz: u(x, t) = X(x)T (t) ⇒
X′′

X
= −

Y ′′

Y
= α

6.1 α = 0

6.1.1 α = 0 ⇒ X′′ = 0

X(x) = Ax+ B

X
′
(x) = A

6.1.2 α = 0 ⇒ Y ′′ = 0

Y (y) = Cy +D

Y
′
(y) = C

6.2 α > 0

6.2.1 α > 0 ⇒ X′′ − αX = 0

X(x) = Ae
√

αx
+ Be

−
√

αx

X
′
(x) =

√
αAe

√
αx −

√
αBe

−
√

αx

6.2.2 α > 0 ⇒ Y ′′ + αY = 0

Y (y) = A sin(
√
αy) + B cos(

√
αy)

Y
′
(y) =

√
αA cos(

√
αy) −

√
αB sin(

√
αy)

6.3 α < 0 (am besten α = −p2, p ∈ R+ definieren)

6.3.1 α < 0 ⇒ X′′ + p2X = 0

X(x) = A sin(px) + B cos(px)

X
′
(x) = pA cos(px) − pB sin(px)

6.3.2 α < 0 ⇒ Y ′′ − p2Y = 0

Y (y) = Ae
py

+ Be
−py

Y
′
(y) = pAe

py − pBe
−py

6.3.3 Anmerkung:

E1e
ay − E1e

−ay = E2 sinh(ay)

E1e
ay + E1e

−ay = E2 cosh(ay)

6.4 Allgemeine Lösung der PDE

u(x, y) = [C cosh(kx) +D sinh(kx)][A cos(ky) + B sin(ky)]

6.5 Superposition eines Dirichlet Problem

Lösung für A:

u1(x, y) =
∑∞

n=1
An sin(

nπx

a
) sinh(

nπ(b− y)

a
)

An =
2

a sinh(nπb
a )

∫ a

0

f1(x) sin(
nπx

a
)dx

Lösung für B:

u2(x, y) =
∑∞

n=1
Bn sin(

nπx

a
) sinh(

nπy

a
)

Bn =
2

a sinh(nπb
a )

∫ a

0

f2(x) sin(
nπx

a
)dx

Lösung für C:

u3(x, y) =
∑∞

n=1
Cn sinh(

nπ(a− x)

a
) sin(

nπy

b
)

Cn =
2

b sinh(nπa
b )

∫ b

0

g1(y) sin(
nπy

b
)dy

Lösung für D:

u4(x, y) =
∑∞

n=1
Dn sinh(

nπx

b
) sin(

nπy

b
)

Dn =
2

b sinh(nπa
b )

∫ b

0

g2(y) sin(
nπy

b
)dy

Lösung für A+B+C+D=(*):

u = u1 + u2 + u3 + u4

7 Dirichlet-Problem auf einem Kreis

Man kann das Problem in Polarkoordinaten umschreiben:

urr +
1

r2
uθθ +

1

r
ur = 0, auf {(r, θ) s.d. 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π},

u(R, θ) = f(θ), auf {(R, θ) s.d. 0 ≤ θ < 2π}.

7.1 Separation der Variablen

Man nimmt an, dass die Lösung der PDE die Form

u(r, θ) = F (r)G(θ)

besitzt. Man kann das in die PDE einsetzen:

F
′′
G+

1

r2
FG̈+

1

r
F

′
G = 0

r
2
F

′′
G+ FG̈+ rF

′
G = 0

(r
2
F

′′
+ rF

′
)G = −FG̈

r2F ′′ + rF ′

F
=

−G̈
G

= k

Die Randbedingungen lauten:

G(0) = G(2π)

Ġ(0) = Ġ(2π)

7.2 Fallunterscheidung

Man versucht die DGL mit der Funktion G(θ) zu lösen:
k = 0: G̈ = 0 Die Lösung lautet: G(θ) = Aθ + B Mit der ersten Randbe-
dingung folgt: G(0) = B = 2πA + B = G(2π) Das heißt A = 0. Mit der
zweiten Randbedingung folgt, dass G(θ) konstant sein muss.
k < 0: G̈− kG = 0 Die Lösung lautet: G(θ) = Ce

√
−kθ +De−

√
−kθ Mit den

Randbedingungen folgt:

C +D = Ce
(
√

−k)2π
+De

−(
√

−k)2π√
−kC −

√
−kD =

√
−kCe(

√
−k)2π −

√
−kDe−(

√
−k)2π

Man addiert die beiden Gleichungen und kürzt
√
−k aus der zweiten

Gleichung. Es folgt: C = 2Ce(
√

−k)2π Die einzige Lösung ist C = 0 und
D = 0 (triviale Lösung).
k > 0: G̈+ kG = 0 Die Lösung lautet: G(θ) = E cos(

√
kθ) +H sin(

√
kθ) Mit

den Randbedingungen folgt:

E = E cos(
√
k2π) +H sin(

√
k2π)

H = −E sin(
√
k2π) +H cos(

√
k2π)

Man multipliziert die erste Gleichung mit H und die zweite mit E und
vergleicht die beiden Gleichungen: H2 sin(

√
k2π) = −E2 sin(

√
k2π) Da

−E2 = H2 nie möglich ist, muss sin(
√
k2π) = 0 gelten.

Es folgt: Gn(θ) = An cos(nθ) + Bn sin(nθ)

Falls man k = n2 in die erste Gleichung einsetzt, folgt r2F ′′ + rF ′ −
n2F = 0. Dies ist eine Euler-DGL, und man findet folgende Lösung:
Fn(r) = Pnr

n + Qnr
−n Man möchte aber, dass die Lösung im Gebiet

beschränkt bleibt. Damit r → 0 beschränkt bleibt, setzt man Qn = 0. Da
u(r, θ) = F (r)G(θ) sein muss, gilt: un(r, θ) = rn(An cos(nθ) + Bn sin(nθ))

Mit dem Superpositionsprinzip kann man die Lösung für alle n schreiben
als:

u(r, θ) =

∞∑
n=0

r
n
(An cos(nθ) + Bn sin(nθ))
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8 Appendix

8.1 Umwandlungen

Gegeben: n ∈ N

sin(πn) = 0 ; cos(πn) = (−1)
n

cos
(π
2
n
)

=

(
1 + (−1)n

2

)
(−1)

n
2 =

{
0, n = 2j + 1

(−1)j , n = 2j

sin
(π
2
n
)

=

(
1 + (−1)n

2

)
(−1)

n+2
2 =

{
0, n = 2j

(−1)j , n = 2j + 1

sin(x) sin(nx) =
1

2
(cos((1 − n)x) − cos((n+ 1)x))

cos(x) cos(nx) =
1

2
(cos((n+ 1)x) + cos((n− 1)x))

sin
(
(n± 1)

π

2

)
= ± cos

(nπ
2

)
cos
(
(n± 1)

π

2

)
= ∓ sin

(nπ
2

)
cos

2
(x) − sin

2
(x) = cos(2x)

cos
2
(x) =

1

2
+

1

2
cos(2x)

8.2 Identitäten

(−1)
n
+ (−1)

−n
= e

inπ
+ e

−inπ
= 2 cos(πn)

(−1)
n − (−1)

−n
= e

inπ − e
−inπ

= 2i sin(πn)

∇2
= ∆ =


∂2

∂x2

∂2

∂y2

∂2

∂z2


8.3 even - odd

even · even =̂ odd · odd =̂ even

even · odd =̂ odd∫ L

−L

even = 2

∫ L

0

even∫ L

−L

odd = 0

Jede Funktion ist aufteilbar in even & odd Teil:

f = feven + fodd =

(
f(x) + f(−x)

2
+
f(x) − f(−x)

2

)

8.4 Vorgelöste Integrale∫
sin

2
(nx)dx =

∫ [
−

1

2
cos(2nx) +

1

2

]
dx

= −
1

2

∫
cos(2nx)dx+

∫
1

2
dx = −

1

4n
sin(2nx) +

x

2

∫
cos

2
(nx)dx =

∫ [
1

2
cos(2nx) +

1

2

]
dx

=
1

2

∫
cos(2nx)dx+

∫
1

2
dx =

1

4n
sin(2nx) +

x

2∫
tan

2
(nx)dx =

∫ [
sec

2
(nx) − 1

]
dx

=
sin(nx)

n cos(nx)
− x =

1

n
tan(nx) − x

∫
x sin(nx) = −

x

n
cos(nx) +

1

n

∫
cos(nx)dx

= −
x

n
cos(nx) +

1

n2
sin(nx) =

sin(nx) − nx cos(nx)

n2∫
x cos(nx) =

x

n
sin(nx) −

1

n

∫
sin(nx)dx

=
x

n
sin(nx) +

1

n2
cos(nx) =

nx sin(nx) + cos(nx)

n2∫
x sin

2
(nx)dx =

∫
x

2
[− cos(2nx) + 1]dx

=
1

2

∫
xdx−

1

2

∫
x cos(2nx)dx

=
x2

4
−

1

2

[
x

2n
sin(2nx) −

∫
1

2n
sin(2nx)

]
=
x2

4
−

x

4n
sin(2nx) −

1

8n2
cos(2nx)

∫
x cos

2
(nx)dx =

∫
x

2
[cos(2nx) + 1]dx

=
1

2

∫
xdx+

1

2

∫
x cos(2nx)dx

=
x2

4
+

1

2

[
x

2n
sin(2nx) −

∫
1

2n
sin(2nx)dx

]
=
x2

4
+

x

4n
sin(2nx) +

1

8n2
cos(2nx)

∫
sin(kx) cos(nx) =

1

2

∫
[sin(x(k − n)) + sin(x(k + n))]dx

=
1

2

[∫
sin(xk − xn)dx+

∫
sin(xk + nx)dx

]
=

1

2

[
cos(xk − xn)

k − n
−

cos(xk + xn)

k + n

]
∫

sin(kx) sin(nx)dx =

∫ [
1

2
cos(kx− nx) −

1

2
cos(kx+ nx)

]
dx

=
1

2

[
sin(kx− nx)

k − n
−

sin(kx+ nx)

k + n

]
∫

cos(kx) cos(nx)dx =

∫ [
1

2
cos(kx− nx) +

1

2
cos(kx+ nx)

]
dx

=
1

2

[
sin(kx− nx)

k − n
+

sin(kx+ nx)

k + n

]

∫
cos(kx) cos

2
(nx)dx =

∫
1

2
[cos(2nx) + 1] cos(kx)dx

=
1

2

∫ [
cos(kx) cos(2nx)dx+

∫
cos(kx)

]
dx

=
1

2

∫ [
1

2
cos(kx− 2nx) +

1

2
cos(kx+ 2nx)

]
dx+

1

2

∫
cos(kx)dx

=
1

4

[
sin(x(k + 2n))

k + 2n
+

sin(x(k − 2n))

k − 2n

]
+

1

2k
sin(kx)

∫
sin(kx) sin

2
(nx)dx =

∫
1

2
[1 − cos(2nx)] sin(kx)dx

=
1

2

[
−
∫

sin(kx) cos(2nx)dx+

∫
sin(kx)dx

]
=

1

2

∫ [
1

2
sin(kx− 2nx) +

1

2
sin(kx+ 2nx)

]
dx+

1

2

∫
sin(kx)dx

= −
1

4

[
cos(kx+ 2nx)

k + 2n
+

cos(kx− 2nx)

k − 2n

]
−

1

2k
cos(kx)

∫
sin(kx) cos

2
(nx)dx =

∫
1

2
[cos(2nx) + 1] sin(kx)dx

=
1

2

∫
[sin(kx) cos(2nx) + sin(kx)]dx

=
1

2

∫ [
1

2
sin(kx− 2nx) +

1

2
sin(kx+ 2nx)

]
dx+

1

2

∫
sin(kx)dx

=
−1

4

[
cos(x(k + 2n))

k + 2n
+

cos(x(k − 2n))

k − 2n

]
−

1

2k
cos(kx)

∫
cos(kx) sin

2
(nx)dx =

∫
1

2
[1 − cos(2nx)] cos(kx)dx

=
1

2

∫
[− cos(kx) cos(2nx) + cos(kx)]dx

=
1

2

∫ [
1

2
cos(kx− 2nx) +

1

2
cos(kx+ 2nx)

]
dx+

1

2

∫
cos(kx)dx

=
−1

4

[
sin(x(k + 2n))

k + 2n
+

sin(x(k − 2n))

k − 2n

]
+

1

2k
sin(kx)

8.5 Allgemein Integral

∫ L

−L

cos
(nπx
L

)
· cos

(mπx
L

)
dx =


0 für n ̸= m

L für n = m

2L für n = m = 0∫ L

−L

sin
(nπx
L

)
· sin

(mπx
L

)
dx =

{
0 für n ̸= m

L für n = m ̸= 0∫ L

−L

sin
(nπx
L

)
· cos

(mπx
L

)
dx = 0 ∀n,m

Nach Integral:

sin(nx)|2π0 = 0 ; cos(nx)|2π0 = 0

x sin(nx)|2π0 = 0 ; x cos(nx)|2π0 = 2π ̸= 0
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8.6 Integraltafel

8.6.1 Integrale (
√
· · ·, etc...)

∫
(ax+ b)

n
dx =

(ax+ b)n+1

(n+ 1)a
, (n ̸= −1)∫

1

ax+ b
dx =

1

a
ln |ax+ b|∫

x(ax+ b)
n
dx =

(ax+ b)n+2

(n+ 2)a2
−
b(ax+ b)n+1

(n+ 1)a2∫
ax+ b

px+ q
dx =

ax

p
+
bp− aq

p2
ln |px+ q|∫

1

a2 + x2
dx =

1

a
arctan

(x
a

)
∫

1

a2 − x2
dx =

1

2a
ln

∣∣∣∣a+ x

a− x

∣∣∣∣
8.6.2 Integrale (sin(ax), cos(ax), tan(ax))

∫
sin(ax)

2
dx =

x

2
−

sin(2ax)

4a∫
x · sin(ax)dx =

sin(ax)

a2
−
x · cos(ax)

a∫
cos(ax)

2
dx =

x

2
+

sin(2ax)

4a∫
x · cos(ax)dx =

cos(ax)

a2
+
x · sin(ax)

a∫
sin(ax) · cos(ax)dx = −

cos(ax)2

2a∫
sin(x) · ex dx =

ex

2
(sin(x) − cos(x))∫

cos(x) · ex dx =
ex

2
(sin(x) + cos(x))∫

x
2 · sin(ax)dx =

1

a3

[
−a2x2

cos(ax) + 2 · cos(ax) + 2ax sin(ax)
]

∫
x
2 · cos(ax)dx =

1

a3

[
a
2
x
2
sin(ax) − 2 · sin(ax) + 2ax cos(ax)

]
∫

tan(ax)dx = −
1

a
· ln | cos(ax)|∫

arcsin(x)dx = x · arcsin(x) +
√

1 − x2∫
arccos(x)dx = x · arccos(x) −

√
1 − x2∫

arctan(x)dx = x · arctan(x) −
1

2
· ln
(
1 + x

2)

8.6.3 Integrale (eaxundln(x)

∫
x · eax

dx =

(
ax− 1

a2

)
· eax

∫
x · ln(x)dx =

1

2
· x2

(
ln(x) −

1

2

)
∫ π

−π

e
ijx

dx =

{
2π für j = 0

0 für j ̸= 0

8.6.4 Integrale Fota

∫
1

ax+ b
dx =

1

a
ln |ax+ b| + C∫ (

ax
p
+ b
)s
x
p−1

dx =
(axp + b)s+1

ap(s+ 1)
+ C, s ̸= −1, a ̸= 0, p ̸= 0∫ (

ax
p
+ b
)−1

x
p−1

dx =
1

ap
ln
∣∣axp

+ b
∣∣+ C, a ̸= 0, p ̸= 0∫

ax+ b

cx+ d
dx =

ax

c
−
ad− bc

c2
ln |cx+ d| + C∫

1

x2 + a2
dx =

1

a
arctan

(x
a

)
+ C∫

1

x2 − a2
dx =

1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣+ C∫ √
a2 + x2dx =

x

2

√
a2 + x2 +

a2

2
ln
(
x+

√
a2 + x2

)
+ C∫ √

a2 − x2dx =
x

2

√
a2 − x2 +

a2

2
arcsin

x

|a|
+ C∫ √

x2 − a2dx =
x

2

√
x2 − a2 −

a2

2
ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C∫
1

√
x2 + a2

dx = ln
(
x+

√
a2 + x2

)
+ C∫

2
√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C∫
1

√
a2 − x2

dx = arcsin
x

|a|
+ C∫

e
kx
dx =

1

k
e
kx

+ C∫
a
kx
dx =

1

k · ln(a)
a
kx

+ C∫
e
kx

sin(ax+ b)dx =
ekx

a2 + k2
(k sin(ax+ b) − a cos(ax+ b)) + C∫

e
kx

cos(ax+ b)dx =
ekx

a2 + k2
(k cos(ax+ b) + a sin(ax+ b)) + C∫

ln |x|dx = x(ln |x| − 1) + C∫
loga |x|dx = x (loga |x| − loga e) + C∫
x
k
ln xdx =

xk+1

k + 1

(
ln x−

1

k + 1

)
+ C, k ̸= −1∫

x
−1

ln xdx =
1

2
(ln x)

2
+ C

∫
tan xdx = − ln | cos x| + C∫
sin

2
xdx =

1

2
(x− sin x cos x) + C∫

cos
2
xdx =

1

2
(x+ sin x cos x) + C∫

tan
2
xdx = tan x− x+ C∫

1

sin x
dx = ln

∣∣∣tan x
2

∣∣∣+ C∫
1

cos x
dx = ln

∣∣∣tan(x
2

+
π

4

)∣∣∣+ C∫
2

tan x
dx = ln | sin x| + C∫

sin
n
xdx = −

1

n
sin

n−1
x cos x+

n− 1

n

∫
sin

n−2
xdx, n ≥ 2∫

cos
n
xdx =

1

n
sin x cos

n−1
x+

n− 1

n

∫
cos

n−2
xdx, n ≥ 2∫

arcsin xdx = x arcsin x+
√

1 − x2 + C∫
arccos xdx = x arccos x−

√
1 − x2 + C∫

arctan xdx = x arctan x−
1

2
ln
(
1 + x

2)
+ C∫

sinh xdx = cosh x+ C∫
cosh xdx = sinh x+ C∫
tanh xdx = ln cosh x+ C∫
arsinh xdx = x arsinh x−

√
x2 + 1 + C∫

arcosh xdx = x arcosh x−
√
x2 − 1 + C∫

artanh xdx = x artanh x+
1

2
ln
(
1 − x

2)
+ C∫ ∞

0

sin ax

x
dx =

π

2
, a > 0∫ ∞

0

sin
(
x
2)
dx =

∫ ∞

0

cos
(
x
2)
dx =

1

2

√
π

2∫ ∞

0

e
−ax

x
n
dx =

n!

an+1
, a > 0∫ ∞

0

e
−ax2

dx =
1

2

√
π

a
, a > 0
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8.7 Trigonometrische Identitäten

1

cos2 α
= 1 + tan

2
α

1

sin2 α
= 1 + cot

2
α

sin
(
90

◦ ± α
)
= cosα

sin
(
180

◦ ± α
)
= ∓ sinα

cos
(
90

◦ ± α
)
= ∓ sinα

cos
(
180

◦ ± α
)
= − cosα

sin(α± β) = sinα cos β ± cosα sin β

cos(α± β) = cosα cos β ∓ sinα sin β

tan(α± β) =
tanα± tan β

1 ∓ tanα tan β

sin(2α) = 2 sinα cosα

cos(2α) = cos
2
α− sin

2
α = 2 cos

2
α− 1 = 1 − 2 sin

2
α

tan(2α) =
2 tanα

1 − tan2 α

sin(3α) = 3 sinα− 4 sin
3
α

cos(3α) = 4 cos
3
α− 3 cosα

tan(3α) =
3 tanα− tan3 α

1 − 3 tan2 α

sin
2 α

2
=

1 − cosα

2

cos
2 α

2
=

1 + cosα

2

tan
2 α

2
=

1 − cosα

1 + cosα

tan
α

2
=

1 − cosα

sinα
=

sinα

1 + cosα

sinα± sin β = 2 sin
α± β

2
cos

α∓ β

2

cosα+ cos β = 2 cos
α+ β

2
cos

α− β

2

cosα− cos β = −2 sin
α+ β

2
sin

α− β

2

sinα sin β =
1

2
(cos(α− β) − cos(α+ β))

cosα cos β =
1

2
(cos(α− β) + cos(α+ β))

sinα cos β =
1

2
(sin(α− β) + sin(α+ β))

8.8 Ableitungen

(loga |x|)′ = (loga e)
1

x
=

1

x ln a(
a
cx)′

= (c ln a)a
cx

(tan x)
′
=

1

cos2 x
= 1 + tan

2
x

(arcsin x)
′
=

1
√
1 − x2

(arccos x)
′
= −

1
√
1 − x2

(arctan x)
′
=

1

1 + x2

8.9 Euler-Beziehungen

sin(x) =
1

2i

(
e
ix − e

−ix
)

cos(x) =
1

2

(
e
ix

+ e
−ix
)

tan(x) =
eix − e−ix

i (eix + e−ix)

sinh(x) =
1

2

(
e
x − e

−x
)

cosh(x) =
1

2

(
e
x
+ e

−x
)

tanh(x) =
ex − e−x

(ex + e−x)

sinh(0) = 0, cosh(0) = 1

e
kπi

= {1 für k = 0,±2, · · · -1 für k ± 1,±3, · · ·

e
ix

= cos(x) + i · sin(x)

8.10 Logarithmen

ln(uv) = ln(u) + ln(v)

ln
(u
v

)
= ln(u) − ln(v)

ln

(
1

v

)
= − ln(v)

ln
(
u
r)

= r · ln(u)

ln |y| · C = ln
∣∣∣yC ∣∣∣

− ln |r| = ln
∣∣∣r−1

∣∣∣
ln(1) = log(1) = 0

8.11 Geometrie

Kugelvolumen V = 4
3πr

3

Kugeloberfläche A = 4πr2

8.12 Periodizität

ei
√

x ist nicht periodisch.
e
√

2ix ist periodisch.

8.13 Partialbruchzerlegung - Ergänzung

PBZ bei doppelter Nullstelle

s2

(s2 + 1) (s− 1)
⇒

As+ B

s2 + 1
+

C

s− 1

oder

s− 5

(s− 2)2
⇒

A

s− 2
+

B

(s− 2)2

Dann Koeffizientenvergleich

8.14 Komplexe Zahlen

Normalform: z = x+ iy

Polarform: z = r(cos(φ) + i sin(φ)) = r cis(φ)

r =
√
x2 + y2

φ = arccos
(x
r

)
= arcsin

(y
r

)
= tan

( y
x

)
Exponntialform: z = reiφ eiφ = cos(φ) + i sin(φ)

8.14.1 Operationen

Normalform:
z1 + z2 (x1 + x2) + i (y1 + y2)

z1z2 (x1x2 − y1y2) + i (x1y2 + x2y1)

z−1 = 1
z

x
x2+y2 − i y

x2+y2
z1
z2

x1x2+y1y2
x2
2
+y2

2
+ i

x2y1−x1y2
x2
2
+y2

2

Polarform:
z1z2 r1r2e

i(φ1+φ2)

z−1 = 1
z r−1e−iφ

z1
z2

r1
r2
ei(φ1−φ2)

zn, n ∈ Z rneinφ(DE MOIVRE)
Beträge:
r = |z| ≥ 0 |z| =

√
x2 + y2

|zw| = |z||w|
∣∣ z
w

∣∣ = |z|
|w|

|z + w| ≤ |z| + |w|
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9 Zweidimensionale Wellengleichung

Gegeben:

utt = c
2
(uxx + uyy)

(x, y) ∈ [0, a] × [0, b], t > 0

u(0, x, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y)

Allgemeine Lösung

u(x, y, t) =
∑∞

m,n=1

[
Amn cos (λmnt) sin

(
mπ
a x

)
sin
(
nπ
b y
)
+

Bmn sin (λmnt)) sin
(
mπ
a x

)
sin
(
nπ
b y
)]

λmn = cπ

√
m2

a2
+
n2

b2

∞∑
k,l=1

Akl sin

(
kπ

a
x

)
sin

(
lπ

b
y

)
= f(x, y)

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
(mπ
a
x
)
sin
(nπ
b
y
)
dydx

∞∑
k,l=1

Bklλkl sin

(
kπ

a
x

)
sin

(
lπ

b
y

)
= g(x, y)

Bmn =
4

abλmn

∫ a

0

∫ b

0

g(x, y) sin
(mπ
a
x
)
sin
(nπ
b
y
)
dydx

10 Trigonometrie (Fota S.97-99)

α 0 π/6 π/4 π/3 π/2 π T 0-Stellen
sinα 0 1/2

√
2/2

√
3/2 1 0 2 · π k · π

cosα 1
√
3/2

√
2/2 1/2 0 −1 2 · π π

2 + k · π
tanα 0

√
3/3 1

√
3 − 0 π k · π

cotα −
√
3 1

√
3/3 0 − π π

2 + k · π

cos(x) = 1
2

(
eix + e−ix

)
cosh(x) = 1

2

(
ex + e−x

)
sin(x) = 1

2i

(
eix − e−ix

)
sinh(x) = 1

2

(
ex − e−x

)
e2ix = cos(2x) + i sin(2x) e−2ix = cos(2x) − i sin(2x)

sec(x) =
2 cos(x)

cos(2x)+1

11 Koordinatentransformation

Zylinderkoordinaten
dx = cosφ · dρ− ρ sinφ · dφ dy = sinφ · dρ+ ρ cosφ · dφ dA = ρ · dρ · dφ
Sphärische Koordinaten
dA = r2 · sin θ · dψ · dθ dV = r2 · sin θ · dψ · dθ · dr
0 ≤ θ ≤ π 0 ≤ ψ ≤ 2π

Ellipsenkoordinaten
x = a · r cos(φ) y = b · r sinφ z = 0

dA = abrdrdφ

12 Ableitungsregeln (Fota S.63-65)

12.1 Produktregel

(f(x) · g(x))′ → f ′(x) · g(x) + f(x) · g′(x)

12.2 Quotientenregel(
f(x)
g(x)

)′
→ f′(x)·g(x)−f(x)·g′(x)

g(x)2

12.3 Verallgemeinerte Kettenregel

F ′(t) = fx(x(t), y(t)) · ẋ(t) + fy(x(t), y(t)) · ẏ(t)

13 Integralregeln (Fota S.70-72)

13.1 Integral mit Fkt. als Grenze∫ g(x)

a
f(u) · du = f(g(x)) · g′(x)

13.2 Partielle Integration∫
u′ · vdx = u · v −

∫
u · v′dx

∫
u · v′dx = u · v −

∫
u′ · vdx

13.3 Substitutionsregel∫ b

a
f(u(x)) · u′(x) · dx =

∫ u(b)

u(a)
f(z) · dz , wobei z = u(x)

14 Vektoranalysis (Fota S.102-105)

14.1 Skalarprodukt

a⃗ · b⃗ =

 a1
a2
a3

 ·

 b1
b2
b3

 = a1 · b1 + a2 · b2 + a3 · b3

14.2 Vektorprodukt

a⃗× b⃗ =

 a1
a2
a3

×

 b1
b2
b3

 =

 a2 · b3 − a3 · b2
a3 · b1 − a1 · b3
a1 · b2 − a2 · b1


14.3 Differentialoperatoren

grad(f) =
(

∂f
∂x (x, y, z), ∂f

∂y (x, y, z), ∂f
∂z (x, y, z)

)
div(v⃗) =

(
∂v1
∂x (x, y, z) +

∂v2
∂y (x, y, z) +

∂v3
∂z (x, y, z)

)
rot(v⃗) =

(
∂v3
∂y − ∂v2

∂z ,
∂v1
∂z − ∂v3

∂x ,
∂v2
∂x − ∂v1

∂y

)

15 Partialbruchzerlegung

1. einfache Nullstelle: A
(x−x0)

2. doppelte Nullstelle: A
(x−x0)

+ B
(x−x0)2

3. komplexe Nullstelle: Ax+B

(z·B:x2+1)

Beispiel : x
x3+x2−x−1

= A
(x+1)2

+ B
(x+1)

+ C
(x−1)

=
A·(x+1)·(x−1)+B·(x+1)2·(x−1)+C·(x+1)3

(x+1)2·(x+1)·(x−1)∣∣∣∣∣∣∣∣
−A− B + C = 0

−B + 3C = 1

A+ B + 3C = 0

B + C = 0

∣∣∣∣∣∣∣∣⇒ A =
1

2
, B = −

1

4
, C =

1

4

Tipp:
(
1 + x3

)
= (1 + x)

(
1 − x+ x2

)
16 Asymptoten (Fota S.66)

1. limx→∞
f(x)
A(x)

= 0
0 oder ∞

∞ ⇒ Bernoulli-L’Hopital

2. A(x) = mx + b → m = limx→∞

(
f(x)
x

)
→ b = limx→∞(f(x) −

mx)

3. Allgemein: limx→∞(f(x) − A(x)) = 0

a) Höchste Nennerordnung kürzen, limx→∞ bilden ⇒ a1 = . . . →
konstante Terme fallen weg!
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b) Gefundenen Term von Ursprungsfkt. abziehen → Zähler wird
um eine Ordnung kleiner

c) limx→∞ bilden, Nennerordnung kürzen ⇒ a2 =..

d) A(x) = a− 1 + a2 + . . .

17 Bernoulli-L’Hopital (Fota S.61)

Falls limx→∞
f(x)
g(x)

= 0
0 oder limx→∞

f(x)
g(x)

= ∞
∞

→ beide Fkt. müssen gegen 0 oder ∞ gehen!

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

18 Folgen (Fota S.38-41 + S.51-54)

Satz: Ist eine Folge monoton wachsend und beschränkt, so ist sie konver-
gent.
Konvergente Folge: besitzt einen Grenzwert.
Eine Folge ohne Grenzwert ist divergent.
Konkav: f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y)

Konvex: f(tx+ (1 − t)y) ≥ tf(x) + (1 − t)f(y)

t ∈ [0, 1], strikt wenn ≤ durch < ersetzt wird.

18.1 Grenzwerte (Fota S.61-62)

1. Wurzel: erweitern nach 3. Binom. Formel

2. Beträge: links- und rechts. Grenzw. separieren

3. ex >> xk >>
√
x >> ln(x)

limx→∞
BLA1
BLA2

1. Höchste Potenz kürzen ⇒ niedrigere Potenz gegen 0

2. Gehen Zähler und Nenner gegen ∞ oder 0 ⇒ Regel von Bernoulli-
L’Hopital (evtl. mehrfach)

3. Partialbruchzerlegung limx→∞
(x−x0)

(x−x0)
· bla1

bla 2
→ Nenner-Nst.

ausklammern limx→xo = A
BLA1 + B

BLA2

4. 1
x durch y substituieren → limx→∞ = limy→0 ⇒ Bernoulli-L’Hopital
anwendbar

5. Sandwichsatz: Folgen an, bn, cn mit an ≤ bn ≤ cn

• limx→∞ an = limx→∞ cn = l → limx→∞ bn = l

18.2 Wichtige Grenzwerte

limx→0
sin(x)

x = 1 limx→0
cos(x)−1

x = 0

limx→0
arctan(x)

x = 1 limx→0
1−cos(x)

x2 = 1
2

limx→0
arcsin(x)

x = 1 limx→0
tan(x)

x = 1

limx→0 = x
sin(ax)

= 1
a limx→±π

2

tan(x)
x = ∓∞

limx→0 =
sin(ax)
sin(x)

= a limx→∞
(
1 + 1

x

)x
= e

limx→∞ n · sin
(

1
n

)
= 1 limx→∞

(
1 + x

n

)n
= ex

limx→0
ax−1

x = ln(a) limx→0 x
a · lnnb(x) = 0

limx→0
ln(a+x)

x = 1
a limx→∞

ln(x)

xk = 0

limx→∞
x
√
a = 1 limx→∞

eax

xb = +∞
limx→∞

x
√
x = 1 limx→∞

(
n−1
n+1

)n
= 1

e2

limx→∞
xb

eax = 0

19 Ableitungen (Fota S.63-65)

19.1 Ableitung der Umkehrfunktion (Inverse)

g = f
−1

(x) ⇒ g
′
(x) =

1

f ′(g(x))

19.2 Ableitung von Kurve in Parameterdarstellung

y
′
=
ẏ

ẋ
; y

′′
=
ẋÿ − ẍẏ

ẋ3

19.3 Ableitung in Polarkoordinaten

→ Aus x(t) und y(t) wird r(ϕ)

x(ϕ) = r(ϕ) · cos(ϕ) ; y(ϕ) = r(ϕ) · sin(ϕ)

y
′
=
ẏ

ẋ
=
ṙ(ϕ) sin(ϕ) + r(ϕ) cos(ϕ)

ṙ(ϕ) cos(ϕ) − r(ϕ) sin(ϕ)

20 Partielle Ableitungen

20.1 Richtunsableitung

→ Änderungsgrad der Fkt. in geg. Richtung r⃗

Dr =
r⃗

|r⃗|
· grad(f(x, y, z))

Definition: Du,vf(0, 0) = limx→0
f(hu̇,hv̇)−f(0,0)

h

20.2 Satz von Schwarz

Wenn fxy und fyx stetig, dann gilt fxy = fyx

20.3 Satz vom Maximum

Bereich A abgeschlossen und beschränkt, f stetig auf A
⇒ ∃ mind. eine Max/Minstelle (x0, y0) ∈ A

20.4 Hesse-Matrix(
∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂y

∂2f

∂y2

)
positiv def ⇒ lok. Min

negativ def ⇒ lok. Max, nicht def ⇒ Sattel
√
kt.

20.5 Laplace Operator

∆f = fxx + fyy + fzz
∆f = fρρ + 1

ρ fρ + 1
ρ2
fφφ + fzz

∆f = frr + 2
r fr + 1

r2
fθθ + 1

r2
cot(θ)fθ + 1

r2 sin2(θ)
fφφ

21 Integrale (Fota S.70-74)

21.1 Hauptsatz der Integralrechnung

d
dx

∫ x

a
f(t)dt = f(x)

21.2 Leibnizsche Regel

Bedingung: f(x, t) stetig im Intervall
d
dx

∫ v(x)

u(x)
f(x, t)dt = f

(
x, (v(x)) · v′(x) − f(x, u(x)) · u′(x)+

∫ v(x)

u(x)
fx(x, t)dt

d
dx

∫ g(x)

a
f(t)dt = f(g(x)) · g′(x) → Nur im Spezialfall

21.3 Uneigentliche Integrale

• Uneigentliches Integral 1. Ordnung: → Integral bis ∞∫ ∞

a

f(x)dx = lim
c→∞

∫ c

a

f(x)dx

• Uneigentliches Integral 2. Ordnung: → Polstellen oder Definition-
slücken ∫ 1

0

1
√
x
dx = lim

a→0

∫ 1

a

1
√
x
dx

21.4 Ansätze für Integrale

1. Substitution

2. Partielle Integration

3. Partialbruchzerlegung

4. Probieren mit Hilfe von Ableitung

5.
∫ f′(x)

f(x)
dx = ln(f(x)) + C

6. Wurzelintegrale:

a) Quadratisch Ergänzen, s.d. k
(
1 − u2

)
oder k

(
u2 ± 1

)
b) Sub:

√
u2 + 1 ⇒ u = sinh(t);

√
u2 − 1 ⇒ u = cosh(t)

√
1 − u2 ⇒

u = sin(t)
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21.5 Substitutionen

Integral Subst. Bemerkungen
f(ax+ b) t = ax+ b

f(g(x))g′(x) g(x) = t =
∫
f(t)dt

f(x,
√
ax+ b) x = t2−b

a t ≥ 0

f
(
x,

√
a2 − x2

)
x = a sin(t)

√
a2 − x2 = a cos(t)

f
(
x,

√
a2 + x2

)
x = a sinh(t)

√
a2 + x2 = a cosh(t)

f
(
x,

√
x2 − a2

)
x = a cosh(t)

√
x2 − a2 = a sinh(t)

f(sin(x), cos(x)) t = tan
(
x
2

)
sin(x) = 2t

1+t2

cos(x) = 1−t2

1+t2

dx = 2dt
1+t2

f (ex, sinh, cosh) t = ex sinh(x) = t2−1
2t

cosh(x) = t2+1
2t

21.6 Integraltabelle

∫ π
4

0

∫ π
2

0

∫ π

0

∫ 2π

0

∫ π
4

−π
4

∫ π
2

−π
2

∫ π

−π

sin
√

2−1√
2

1 2 0 0 0 0

sin2 π−2
8

π
4

π
2 π π−2

4
π
2 π

sin3 8−5
√

2
12

2
3

4
3 0 0 0 0

sin4 3π−8
32

3π
16

3π
8

3π
4

3π−8
16

3π
8

3π
4

cos2 1√
2

1 0 0
√
2 2 0

cos2 2+π
8

π
4

π
2 π 2+π

4
π
2 π

cos3 5
6
√

2
2
3 0 0 5

3
√

2
4
3 0

cos4 8+3π
32

3π
16

3π
8

3π
4

8+3π
16

3π
8

3π
4

sin2 cos 1
4

1
2 0 0 0 0 0

sin2 · cos 1
6
√

2
1
3 0 0 1

3
√

2
2
3 0

sin · cos2 4−
√

2
12

1
3

2
3 0 0 0 0

21.7 Wichtige Integrale Fota (S.72 - 74 + S. 65)

∫
f ′(x)

f(x)
dx = ln |f(x)| + C∫

f
′
(x) · f(x)dx =

1

2

(
f
2
(x)
)
+ C∫

(ax+ b)
n
dx =

(ax+ b)n+1

(n+ 1)a
+ C∫

x(ax+ b)
n
dx =

(ax+ b)n+2

(n+ 2)a2
−
b(ax+ b)n+1

(n+ 1)a2
+ C∫

x

(ax+ b)n
dx = −

1

(n− 2)a2(ax+ b)n−2
+

b

(n− 1)a2(ax+ b)n−1
+ C∫

x
2
(ax+ b)

n
dx =

(ax+ b)n+3

(n+ 3)a3
−

2b(ax+ b)n+2

(n+ 2)a3
+
b2(ax+ b)n+1

(n+ 1)a3
+ C∫

x

x2 + a
dx =

1

2
ln
∣∣x2

+ a
∣∣+ C∫

x

ax2 + b
dx =

1

2a
ln
∣∣ax2

+ b
∣∣+ C∫

1

x2 − a2
dx =

1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣+ C

∫
1

x2 + a2
dx =

1

a
arctan

(x
a

)
+ C∫

x

(x2 + a2)n
dx = −

1

2(n− 1) (a2 + x2)n−1
+ C∫

x

(a2 − x2)n
dx =

1

2(n− 1) (a2 − x2)n−1
+ C∫

x2 − y2

x2 + y2
dx =

y

x2 + y2
+ C∫

1
√
1 − x2

dx = arcsin(x) + C∫
−1

√
1 − x2

dx = arccos(x) + C∫
1

1 − x2
dx = artanh(x) = log

(√
1 + x

1 − x

)
+ C, |x| < 1∫

1
√
x2 + 1

dx = arsinh(x) = log
(
x+

√
x2 + 1

)
+ C∫

1
√
x2 − 1

dx = arcosh(x) = log
(
x+

√
x2 − 1

)
+ C, 1 ≤ x∫

1

sin2(x)
dx = − cot(x) + C∫

sin
3
(x)dx =

1

12
(cos(3x) − 9 cos(x)) + C∫

sin
4
(x)dx =

1

32
(12x− 8 sin(2x) + sin(4x)) + C∫

cos
3
(x)dx =

1

12
(9 sin(x) + sin(3x)) + C∫

cos
4
(x)dx =

1

32
(12x+ 8 sin(2x) + sin(4x)) + C∫

sin
3
2 (2x)dx = −

1

2
cos(2x) + C∫

cos
3
2 (2x)dx = sin(x) cos(x) + C∫

sin(x) cos(x)dx = −
1

2
cos

2
x+ C∫

sin
2
(x) cos(x)dx =

1

3
sin

3
(x) + C∫

sin(x) cos
2
(x)dx = −

1

3
cos

3
(x) + C∫

sin
2
(x) cos

2
(x)dx =

1

32
(4x− sin(4x)) + C∫

sin
n
(ax) · cos(ax)dx =

sinn+1(ax)

(n+ 1)a
+ C∫

sin(ax) · cosn(ax)dx = −
cosn+1(ax)

(n+ 1)a
+ C∫

tan
3
(x)dx =

sec2(x)

2
+ ln(cos(x)) + C

∫
tan

4
(x)dx = x+

1

3
tan(x)

(
sec

2
(x) − 4

)
+ C∫

cot(x)dx = log(sin(x)) + C∫
coth(x)dx = log(sinh(x)) + C∫
cos(ax)

sinn(ax)
dx = −

1

(n− 1)a · sinn−1(ax)
+ C∫

1

ex + a
dx =

x− ln (a+ ex)

a
+ C∫

1

ex − a
dx =

ln (ex − a) − x

a
+ C∫

1

x2 + x
dx = ln(x) − ln(x+ 1) + C

∫
1

2ax2 + bx+ c
dx =

2an

(
2ax+b√
4ac−b2

)
√
4ac− b2

+ C∫
x · eax

dx =

(
ax− 1

a2

)
· eax

+ C∫
x
2 · eax

dx =

(
a2x2 − 2ax+ 2

a3

)
· eax

∫
1

p+ q · eax
dx =

x

p
−

1

ap
· ln
∣∣p+ q · eax

∣∣+ C∫
eax

p+ q · eax
dx =

1

ap
· ln
∣∣p+ q · eax

∣∣∫
e
ax · sin(bx)dx =

eax

a2 + b2
[a · sin(bx) + b · cos(bx)] + C∫

e
ax · cos(bx)dx =

eax

a2 + b2
[a · cos(bx) + b · sin(bx)] + C∫

x · ex
2
dx =

1

2
· ex

2
+ C∫

(ln(x))n

x
dx =

(ln(x))n+1

x+ 1
+ C∫∫ ∞

−∞

1

1 + x2
dx = π

(7)

21.8 Satz von Stokes

A =
∫∫

rot(v⃗) · n⃗dO → (n⃗ normiert!!!) (zB. : dO = dx · dy)

22 Differentialoperatoren

grad(f) = ∇f(x, y, z) =
(

∂f
∂x (x, y, z), ∂f

∂y (x, y, z), ∂f
∂z (x, y, z)

)
div(v⃗) =

(
∂v1
∂x (x, y, z) +

∂v2
∂y (x, y, z) +

∂v3
∂z (x, y, z)

)
rot(v⃗) =

 ∂x
∂y
∂z

×

 v1
v2
v3

 =

 ∂y · v3 − ∂z · v2
∂z · v1 − ∂x · v3
∂x · v2 − ∂y · v1


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22.1 Zusammensetzungen von Differentialoperatoren

div(grad(f)) = fxx + fyy + fzz = ∆f → Laplace-Operator
rot(grad(f)) ≡ (0, 0, 0)

div(rot(v⃗)) ≡ 0

div(f · rot(v⃗) = grad(f) · rot(v⃗)
rot (rot(v⃗) = grad(div(v⃗)) − (∆v1,∆v2,∆v3)

div = 0 ⇒ Quellfrei, rot = 0 ⇒ Wirbelfrei.
div = rot = 0 ⇒ Harmonisch

23 Differentialgleichungen (Fota S.81-82)

23.1 lineare homogene DGL 1.Ordnung

Form: F
(
x, y, y′, y′′, . . . , yn

)
simpel: y′(x) = f(x) → y(x) =

[∫
f(x)dx

]
+ C

separiebar: y′(x) =
f(x)
h(y)

→
∫
h(y)dy =

[∫
f(x)dx

]
+ C

y′ = p(x) · y (immer separierbar):

1. Substitution y′ = dy
dx

2. Separieren → 1
y · dy = p(x) · dx

3. Integrieren →
∫

1
y dy =

[∫
p(x)dx

]
+ C

Substitutionen: → Achtung Rücksubstitution!

• y′(x) = f(ax + by(x) + c) : Sub : u(x) = ax + by(x) + c

⇒ u′(x) = a+ b · f(u)

• y′(x) = f
(
y
x

)
: Sub : u(x) = y

x

→ y = u(x) · x
⇒ y′(x) = u(x) + x · u′(x)

• y′(x) = (y(x) + f(x))2 : Sub : u(x) = y(x) + f(x)

→ y(x) = u(x) − f(x)

⇒ y′(x) = u′(x) − f ′(x)

Tipp: DGL-Form: u′ · y + u · y′ = (uy)′ → Integral

23.2 lineare inhomogene DGL 1.Ordnung

y′ = p(x) · y + q(x)

1. Lösen der homogenen DGL wie oben
⇒ yh = y′ + ay = 0

1. Finde partikuläre Lösung mit:

• Ansatz von Tabelle → 3.1

• Ansatz von Lagrange → 4.1

3.1 Ansatz ableiten → y′

3.2 y und y′ in Anfangsgleichung einsetzen
3.3 Konstanten bestimmen → 5.

5. y = yh + yp → Randbedingungen

Störfunktion Ansatz für yp

Konstante yp = A

lin. Fkt. yp = Ax + B

quadr. Fkt. yp = Ax2 + Bx + C

Polynom n-Grades yp = A + Bx + Cx2 + . . .+ Zxn

A sin(ωx) yp = C sin(ωx) + D cos(ωx)

B cos(ωx)

C sin(ωx) +D cos(ωx)

A · ebx yp = C · ebx oder falls b = −a :

yp = Cx · ebx

Ansatz von Lagrange
4.1 Homogene Lösung finden: y(x) = C·...
4.2 Konstante C als veränderliche Fkt.: C = C(x) ⇒ y(x) = C(x) · . . .
4.3 Ableiten: y′(x) = C′(x) · . . . → Produktregel!
4.4 Einsetzen in die inhomogene DGL

4.5 Lösen nach C(x) → meist partielle Integration

4.6 Lösung für C(x) in Lösung von yh einsetzen → 5

23.3 Exakte DGL

Beschreiben Niveaulinien einer Funktion
Φ(x, y) + Ψ(x, y) · y′ = 0

Bedingung:

• Φy(x, y) = Ψx(x, y)∀(x, y) ∈ Def. Bereich

• Def. Bereich muss einfach zusammenh. sein. Lösen:∫
Φ(x, y)dx+ α(y) =

∫
Ψ(x, y)dy + β(x) = u(x, y)

→ α(y) und β(x) durch Koeff.vergl. finden
u(x, y) + C = 0 → nach y lösen ⇒ yh

23.4 Bernoulli DGL

y′(x) + g(x) · y(x) = h(x) · yn

1. Substitution: u = y1−n

2. ⇒ u′ = (1 − n)y−n

3. Ansatz in DGL einsetzen, nach u′ auflösen

4. yh lösen → Rücksubstitution

23.5 Homogene DGL 2.Ordnung

y′′ + a · y′ + b · y = 0

1. Setze y = eλx

2. ⇒ λ2 + aλ+ b = 0 → char. Polynom

3. Löse das char. Polynom:
A) λ1 ̸= λ2 ⇒ y = C1e

λ1x + C2e
λ2x (λ1, λ2 ∈ R)

B) λ1 = λ2 = c ⇒ y = C1e
cx + C2xe

cx(c ∈ R)

C) λ1,2 = d± iω → komplex konjugiert
⇒ y = edx (C1 sin(ωx) + C2 cos(ωx))

⇒ y = edx
(
C1e

iωx + C2e
−iωx

)
4. Falls kein Störterm vorhanden ist → Randbedingungen

23.6 Inhomogene DGL 2.Ordnung

y′′ + a · y′ + b · y = g(x)

1. Lösen der homogenen DGL wie oben

2. Finde partikuläre Lösung mit

A) Ansatz von Tabelle → 3.1

B) Ansatz von Lagrange → 4.1

3.1 Ansatz ableiten → y′, y′′

3.2 y, y′ und y′′ in Anfangsgleichung einsetzen

3.3 Konstanten bestimmen → 5.

5. y = yh + yp → Randbedingungen

Störfunktion Ansatz für yp

Polynom n-Grades
b ̸= 0 yp = Qn(x)

a ̸= 0; b = 0 yp = xQn(x)

a = 0; b = 0 yp = x2Qn(x)

ecx
c ist keine Lsg. yp = Aecx

c ist einfache Lsg. yp = Axecx

c ist doppelte Lsg. yp = Ax2ecx

A sin(ωx)

B cos(ωx)

lin-Komb.

iω ist keine Lsg. des char. Poly.:
yp = Csin(ωx) + Dcos(ωx)

iω ist eine Lsg. des char. Poly.:
yp = x(Csin(ωx) + Dcos(ωx))

1
x2 yp = A · ln |x|

Summe von Störfkt. yp = yp1 + yp2 + . . .

Produkt von Störfkt. yp = yp1 · yp2 · . . .
→ ! Funktioniert nicht immer !

Ansatz von Lagrange für DGL 2.Ordnung
4.1 Homogene Lösung finden: y(x) = C.

4.2 Konstante C1, C2 als veränderliche Fkt.:

C1 = C1(x), C2 = C2(x)

4.3 DGL ⇒ y(x) = C1(x)u(x) + C2(x)v(x)

4.4 Wir treffen folgende Annahme:

C′
1u+ C′

2v = 0

C′
1u

′ + C′
2v

′ = g(x)

4.5 y′ = C1u
′ + C2v

′

y′′ = C′
1u

′ + C1u
′′ + C′

2v
′ + C2v

′′

4.6 Löse für C′
1 und C′

2 :

C′
1 =

g(x)·v
u′v−uv′

C′
2 = − g(x)·u

u′v−uv′

4.7 C1 und C2 durch Integration finden (Integrationskonstante we-
glassen) → 5
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23.7 DGL n-ter Ordnung

y(n) + an−1y
n−1 + . . .+ a1y

′ + a0y = g(x)

1. Kommen nur Ableitungen von y vor?

1.1 Substituiere y′ mit u ⇒ Grad der DGL = n− 1

2. Setze y = eλx

3. Finde charakteristisches Polynom für yh :
λn + an−1λ

n−1 + . . .+ a1λ+ a0 = 0

A) Alle Lsg. sind reell und λ1 ̸= λ2 + . . .

⇒ y1 = C1e
λ1x; y2 = C2e

λ2x

⇒ y(x) = y1 + y2 + . . . = C1e
λ1x + C2e

λ2x + . . .

B) λ = α ist eine r-fache Lsg. des char. Poly.: λ1 = λ2 = . . . = λr = α

⇒ y1 = eαx; y2 = xeαx; . . . ; y1 = xr−1eαx

⇒ y(x) =
(
C1 + C2x+ C3x

2 + . . .+ Crx
r−1

)
eαx

C) λ1,2 = a± iω eine einfach konj. komplexe Lsg.:

⇒ y1 = eax sin(ωx); y2 = eax cos(ωx)

⇒ y(x) = eax (C1 sin(ωx) + C2 cos(ωx))

D) r-fache konj. komplexe Lsg.:

⇒ Ersetze Konstanten C1 und C2 durch C1(x) und

C2(x) vom Grad r

⇒ y(x) = eax (C1(x) sin(ωx) + C2(x) cos(ωx))

4. Finde partikuläre Lösung mit Tabelle ( ∄ Lagrange)

4.1 Ansatz ableiten → y′, y′′, . . . , y(n)

4.2 y′, y′′, . . . , y(n) in Anfangsgleichung einsetzen

4.3 Konstanten bestimmen

5. y = yh + yp → Randbedingungen

Tipp: Char. Poly:: λ5 + λ4 + λ3 + λ2 + λ+ 1 = 0

→ mit (λ− 1) multiplizieren
⇒ ergibt zusätz. Nullst. für λ = 1 → De Moivre (Fota S.18)

Störfunktion Ansatz für yp

Polynom n-Grades yp = A + Bx + Cx2 + . . .

m · ecx c ist keine Lsg. yp = Aecx

c ist einfache Lsg. yp = Axecx

c ist r-fache Lsg. yp = Axrecx

A sin(ωx) iω ist keine Lsg. des char. Poly.:
B cos(ωx) yp = Csin(ωx)+ Dcos (ωx)

lin-Komb. iω ist eine Lsg. des char. Poly.:
yp = x(Csin(ωx)+ Dcos (ωx))

Summe von Störfkt. yp = yp1 + yp2 + . . .

Produkt von Störfkt. yp = yp1 · yp2 · . . .
→! Funktioniert nicht immer !

23.8 Eulersche DGL n-ter Ordnung

any
(n) +

an−1
x yn−1 + . . .+

a1
xn−1 y

′ +
a0
xn y = 0

1. Setze y = xα

2. Finde das Indexpolynom:
...+a3(α− 2)(α− 1)α+ a2α(α− 1) + a1α+ a0 = 0

3. Finde Nullstellen des Indexpolynoms
3.1 Ist α eine k-fache reelle Nullstelle:

x1 → xα, x2 → ln(x) · xα, . . . , xk → (ln(x))k−1 · xα

3.2 Ist α = a + ib, ᾱ = a − ib, b ̸= 0 ein Paar konj. kompl. k-facher
Nullstellen:

x1 → xα cos(b · ln x)

x2 → xα sin(b · ln x)

x3 → (ln x)xα cos(b · ln x) ; x4 → (ln x)xα sin(b · ln x)

xk−1 → (ln x)k−1xα cos(b · ln x); xk → (ln x)k−1xα sin(b · ln x)

4. yh(x) = A · x1 + B · x2 + . . .+ Z · xn

23.9 DGL Systeme

f1, f2, . . . , fn von x unabhängig ⇒ autonom

DGL System:
[
ẋ(t) = f1(x, y)

ẏ(t) = f2(x, y)

]
Phasenportrait: y′ = ẏ

ẋ =
f2(x,y)

f1(x,y)[
ẋ(t) = a11x(t) + a12y(t) + b1

ẏ(t) = a21x(t) + a22y(t) + b2

]
→ A =

(
a11 a12
a21 a22

)
⇒ −→̇

z = A · z⃗ + b⃗, z⃗ =

(
x(t)

y(t)

)
• Störterm b⃗ = 0 → System homogen

• Ordnung: Summe der Ordnungen des Systemes

• DGL abhängig voneinander → gekoppelt, sonst entkoppel

Lösen über char. Polynom → gut für hom. DGI:

1. Bestimme Eigenwerte (A− λI⃗) = 0

A) λ1 ̸= λ2( reel ) ⇒ x(t) = C1e
λ1t + C2e

λ2t

B) λ1 = λ2 = λ( reel ) ⇒ x(t) = (C1 + C2t) e
λt

C) λ1,2 = a± ib ⇒ x(t) = eat (C1 sin(bt) + C2 cos(bt))

2. Wenn b⃗ ̸= 0 ⇒ finde allg. Lösung von x(t)

3. f2 in f1 einsetzen ⇒ y(t) . . .

Lösen über Entkoppelung des Systems: → gut für inhom. DGL

1. Bestimme Eigenwerte: (A− λI) = 0

2. Bestimme Eigenvektoren → ist A halbeinfach? (gV = aV )

A) A ist halbeinfach (= diagonalisierbar) → 3.1

B) A ist nicht halbeinfach → 4.1

3. T−1AT = D

3.1 Hat A doppelte Eigenwerte? Ja ⇒ 4.1

3.2 z = Tz → y′ = Tz′ → z′ = T−1ATz → z′ = Dz

3.3 Löse z′ = Dz → z = . . .

3.4 y = Tz

4. A nicht diagonalisierbar und/oder EW doppelt

4.1
[
ẋ(t) = a · x+ b · y
ẏ(t) = c · x+ d · y

]
→ y = ẋ−ax

b → ẏ = ẍ−aẋ
b

4.2 Einsetzen: ẏ = c · x+ d
(
ẋ−ax

b

)
→ ẍ−aẋ

b = c · x+ d
(
ẋ−ax

b

)
4.3 ⇒ 1

b ẍ− a+d
b ẋ+ ad−cb

b x = 0

4.4 DGL auflösen und allg. Lösung in System einsetzen

und auflösen

23.10 Gleichgewichtspunkte

Dort wo
(

ẋ(t)

ẏ(t)

)
=

(
0

0

)
→ keine Änderung in x und y

Durchlaufsinn:
Richtung, welche sich mit steigendem t die Kurve bewegt:

ẋ > 0 → immer ↷ (positive Steigung)

ẏ < 0 → immer ↶ (negative Steigung)

Nicht lineare Systeme müssen linearisiert werden!
Für Durchlaufsinn:
Falls ẋ < 0 und ẏ > 0 → Intuition oder einfach probieren

24 Potenzreihen (Fota S.79)
∑∞

n=0 an (x− x0)
n → Entwicklungs

√
kt.x0; Koeff. an

Konvergenzradius: r = limn→∞

∣∣∣ an
an+1

∣∣∣ =∑∞
n=0

an (x− x0)
n

∀x mit |x− x0| < r → konv., ∀x mit |x− x0| > r → div.
Finde Taylorreihe
f(x) = f (x0) +

f′(x0)
1! (x− x0)

1 + . . .+
fn(x0)

n! (x− x0)
n

Integral? ⇒ 1.Ableitung: d
dx

∫ x

a
f(t)dt = f(x)

Finde erste k Koeffizienten der Potenzreihenentw.

A) Terme höher als xk streichen
B) Integral: ⇒ Terme höher xk−1 streichen
C) Quadrat? Ausrechnen, zu hohe Terme streichen

Finde komplette Potenzreihenentw. um x0 = a

A) Taylorentwicklung: Ableiten, einsetzen,..
B) Funktion in bekannte Reihe umformen
C) Ableitung/Integral als Reihe darstellbar?
D) Partialbruchzerlegung
E) Funktion als Summe/Produkt bekannter Reihen

Funktion=
∑∞

n=0
anx

n → Koef.-Vergleich
F) Funktion ungerade? → a0, a2, a4, . . . . = 0

G) Bruch? ⇒ Nenner auf linke Seite, Koeff.-Vergl.
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Bsp: ln(x) =
∑∞

k=0 ak(x− 1)k bei x0 = 1

1. Ersetze x durch x0, schreibe Summe aus

ln (x0) = a0 + a1 (x0 − 1)1 + a2 (x0 − 1)2 +

2. Setze x0 ein, finde a0

0 = a0 · 1 + 0 + . . . .+ 0 ⇒ a0 = 0

3. Leite beide Seiten ab

1
x0

= a1 · 1 + a2 · 2 (x0 − 1) + a3 · 3 (x0 − 1)2 + . . .

4. Setze x0 ein , finde a1

1
1 = a1 + 0 + . . . ⇒ a1 = 1

5. Leite weiter ab, finde mehrere an

a0 = 0; a1 = 1; a2 = − 1
2 ; a3 = 1

3 ; . . .

6. Finde Bildungsschema der an

ak =
(−1)k−1

k ; k ≥ 1

→ Achtung: Teillösung nicht vergessen: a0 = 0

24.1 Potenzreihenentwicklung

Alle Reihen um −1 < x < 1 oder −|a| < x < |a|
Geometrische Reihe: 1

1−x =
∑∞

n=0
xn = 1 + x+ x2 + x3 + . . .

1
1+x =

∑∞
n=0(−1)nxn = 1 − x+ x2 − x3 + . . .

1
1−x2 =

∑∞
n=0

x2n = 1 + x2 + x4 + x6+

1
1+x2 =

∑∞
n=0

(−1)nx2n = 1 − x2 + x4 − x6 + . . .

1
a−x =

∑∞
n=0

(
x
a

)n
= 1

a

(
1 + x

a + x2

a2 + x3

a3 + . . .
)

Integrale/Ableitungen der geom. Reihe:
1

(1−x)2
=
∑∞

n=0
(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + 5x4 + . . .

1
(x−a)2

=
∑∞

n=0

(
1
a

)n+2
(n+ 1)xn = 1

a2 + 2x
a3 + 3x2

a4 + 4x3

a5 ..

ln(1 − x) = −
∑∞

n=0
xn+1

n+1 = −
(
x+ x2

2 + x3

3 + . . .
)

ln(1 + x) =
∫ x

1
1

1+tdt =
∑∞

n=0
(−1)n

n+1 xn+1 = x− x2

2 + x3

3 ∓
1

(1−x)3
=
∑∞

n=0
1
2x

n((1 + n)(2 + n)) = 1 + 3x+ 6x2 + 10x3 + . . .

1
(1+x)3

=
∑∞

n=0
1
2x

n(−1)n(1 + n)(2 + n) = 1 − 3x+ 6x2∓
Binomische Reihe:

1
(1+x)2

=
∑∞

n=0
(−1)n(n+ 1)x2 = 1 − 2x+ 3x2 − 4x3 ± . . .

√
1 + x =

∑∞
n=0

(
1
2

n

)
xn = 1 + 1

2x− 1
8x

2 + 1
16x

3 − 5
128x

4±
√
1 − x = 1 − 1

2x− 1
2·4x

2 − 1·3
2·4·6x

3 − 1·3·5
2·4·6·8x

4 − ..
Weitere Reihen (x ∈ R) :

ecx =
∑∞

n=0
(cx)n

n! = 1 + (cx) +
(cx)2

2! +
(cx)3

3! + . . .

sin(x) =
∑∞

n=0
(−1)n x2n+1

(2n+1)!
= x− x3

3! + x5

5! ∓ . . .

cos(x) =
∑∞

n=0(−1)n x2n

(2n)!
= 1 − x2

2! + x4

4! ∓ . . .

sin2(x) = 21

2! x
2 − 23

4! x
4 + 25

6! x
6∓

cos2(x) = 1 − 21

2! x
2 + 23

4! x
4 − 25

6! x
6±

sinh(x) =
∑∞

n=0
1

(2n+1)!
x2n+1 6!

= x+ 1
3!x

3 + 1
5!x

5 + . . .

cosh(x) =
∑∞

n=0
1

(2n)!
x2n = 1 + 1

2!x
2 + 1

4!x
4 + 1

6!x
6 + . . .

ln(x) =
∑∞

n=1
(−1)n−1

n (x− 1)n = (x− 1) − 1
2 (x− 1)2 ± . . .

Vereinfachungen
1

x+2 = 1
3+(x−1)

= 1
3

1

1+
(x−1)

3

= 1
3

(
1 −

(
x−1
3

)
1
(
x−1
3

)2
+ . . .

)
1

(x−3)2
= d

dx
−1
x−3 = d

dx
1

3−x

ln(x) = ln(x+ 1 − 1) = ln(1 + (x− 1))

ex = e · ex−1∫ π
2

0 cos(x)2ndx =
1·2·3·····(2n−3)·(2n−1)

2·4·6·...·(2n−2)·2n · π
2∫ π

2
0 sin(x)2ndx =

1·2·3·...·(2n−3)·(2n−1)
2·4·6·...·(2n−2)·2n · π

2(
a5 − b5

)
= (a− b)

(
a4 + a3b+ a2b2 + ab3 + b4

)
a5 + a4 + a3 + a2 + a+ 1 = (a+ 1)

(
a4 + a2 + 1

)
= (a+ 1)

(
a2+

a+ 1)
(
a2 − a+ 1

)
25 Komplexe Zahlen (Fota S.18-19)

Potenzieren (Nur in Trig./Exp.-Form sinnvoll)
zn = r · cis(φ)n = rn · cis(n · φ)
Wurzel ziehen
n
√
z = n

√
r · ei

φ+2kπ
n = n

√
r · cis

(
φ+2kπ

n

)
k = {0, 1, . . . , n− 1} → bilden ein regelmässiges n-Eck
Natürlicher Logarithmus
ln(z) ist unendlich vieldeutig
Hauptwert: ln(z) = ln(r) + iφ

Allgemein: ln(z) = ln(r) + i(φ+ 2kπ)k ∈ Z

26 Graphen Transformation

27 Drehmatrizen (Fota S.112)

Drehrichtung nach rechte-Hand Regel 1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

→ Drehung um x-Achse

 cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

→ Drehung um y-Achse

 cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

→ Drehung um z-Achse

 cos(φ) · sin(ρ) − sin(φ) cos(φ) · sin(ρ)
sin(φ) · sin(ρ) cos(φ) sin(φ) · sin(ρ)

− sin(ρ) 0 cos(ρ)


→ beliebige Achse durch (0, 0, 0)

→ beliebige Achse durch (0, 0, 0)

28 Fehlerrechnung (Fota S.64)

Voraussetzung: h ist sehr klein

f (x0 + h) ≈ f
′
(x0) · h+ f (x0) + Rest

→ Weil: f ′
(x0) = lim

x→0

f (x0 + h) − f (x0)

h

29 Linearisieren

Tangente an f(x) im Punkt (x0, y0) (lin. Ersatzfkt.):

y(x) = t(x) = f
′
(x0) (x− x0) + y0

Tangentialebene im Punkt (x0, y0) :

t(x, y) =f (x0, y0) + fx ((x0, y0) (x− x0))+

fy ((x0, y0) (y − y0)) = z x

y

z

 =

 x (t0)

y (t0)

z (t0)

+ r · grad

 x (t0)

y (t0)

z (t0)

 , r ∈ R

n⃗E ·

 x

y

z

 = n⃗E ·

 x0

y0
f (x0, y0)


n⃗E = (fx (x0, y0) , fy (x0, y0) ,−1)T

Fehlerfunktion: ϕ(x) = f(x) −
[
f ′ (xo) · (x− x0) + f (x0)

]
29.1 Approximationen für kleine Werte von (x) << 1

√
1 + x = (1 + x)

1
2 ≈ 1 + 1

2x;
1

1+x = (1 + x)−1 ≈ 1 − x

1√
1+x

= (1 + x)−
1
2 ≈ 1 − 1

2x
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30 Additionstheoreme (Fota S.99)

Allgemeines
cos(−x) = cos(x); cos

(
x± π

2

)
= ∓ sin(x)

cos(a) = sin
(
π
2 ± a

)
; tan(a) ± tan(b) =

sin(a±b)
cos(a) cos(b)

cos(a) − sin(a) =
√
2 · sin

(
π
4 − a

)
=

√
2 · cos

(
π
4 + a

)
Cot

1 + cot2(x) = 1
sin(x)

; cot(a± b) =
cot(a) cot(b)∓1
cot(a)±cot(b)

cot(2a) =
cot2(a)−1
2 cot(a)

a
2

sin
(
a
2

)
= ±

√
1
2 · (1 − cos(a)); cos

(
a
2

)
= ±

√
1
2 · (1 + cos(a))

Potenzen

sin2(a) = 1
2 · (1 − cos(2a))

sin3(a) = 1
4 · (3 sin(a) − sin(3a))

sin4(a) = 1
8 · (cos(4a) − 4 cos(2a) + 3)

cos2(a) = 1
2 · (1 + cos(2a))

cos3(a) = 1
4 · (3 cos(a) − cos(3a))

cos4(a) = 1
8 · (cos(4a) − 4 cos(2a) + 3)

30.1 Hyperbolische Funktionen (Fota S.60)

Allgemeines

coth(x) =
cosh(x)
sinh(x)

tanh(a± b) = 1
coth(a±b)

=
tanh(a)±tanh(b)
1±tanh(a) tanh(b)

2a und 3a
Alles gleich wie für sin und cos (Fota S.99),
→ sin =̂ sinh, cos =̂ cosh, tan =̂ tanh
a
2

sinh
(
a
2

)
=

√
cosh(a)−1

2 , x ≥ 0; cosh
(
a
2

)
=

√
cosh(a)+1

2

sinh
(
a
2

)
= −

√
cosh(a)−1

2 , x ≤ 0

Summen
sinh(a) + sinh(b) = 2 sinh

(
a+b
2

)
cosh

(
a−b
2

)
sinh(a) − sinh(b) = 2 cosh

(
a+b
2

)
sinh

(
a−b
2

)
cosh(a) + cosh(b) = 2 cosh

(
a+b
2

)
cosh

(
a−b
2

)
cosh(a) − cosh(b) = 2 sinh

(
a+b
2

)
sinh

(
a−b
2

)
tanh(a) ± tanh(b) =

sinh(a±b)
cosh(a) cosh(b)

Produkte
sinh(a) sinh(b) = 1

2 · [cosh(a+ b) − cosh(a− b)]

cosh(a) cosh(b) = 1
2 · [cosh(a+ b) + cosh(a− b)]

sinh(a) cosh(b) = 1
2 · [sinh(a+ b) + sinh(a− b)]

tanh(a) tanh(b) =
tamh(a)+tanh(b)
coth(a)+coth(b)

sin(ax) sin(bx) = 1
2 [cos((a− b)x) − cos((a+ b)x)]

cos(ax) cos(bx) = 1
2 [cos((a− b)x) + cos((a+ b)x)]

sin(ax) cos(bx) = 1
2 [sin((a+ b)x) + sin((a− b)x)]

Potenzen
sinh2(a) = 1

2 · (cosh(2a) − 1)

sinh3(a) = 1
4 · (sinh(3a) − 3 sinh(a))

sinh4(a) = 1
8 · (cosh(4a) − 4 cosh(2a) + 3)

cosh2(a) = 1
2 · (cosh(2a) + 1)

cosh3(a) = 1
4 · (cosh(3a) + 3 cosh(a))

cosh4(a) = 1
8 · (cosh(4a) + 4 cosh(2a) + 3)

Formel von Moivre
(cosh(a) ± sinh(a))n = cosh(na) ± sinh(na), n ≥ 2

31 Inverse der Trigonometrischen Funktionen

cos(arcsin(x)) =
√
1 − x2 sin(arccos(x)) =

√
1 − x2

sin(arctan(x)) = x√
x2+1

cos(arctan(x)) = 1√
x2+1

tan(arccos(x)) = x−1 · (1 − x)
1
4

tan(arcsin(x)) = x · (1 − x)−
1
4

arsinh(x) = ln
(
x+

√
x2 + 1

)
arcosh(x) = ln

(
x+

√
x2 − 1

artanh(x) = 1
2 · ln

(
1+x
1−x

)
, |x| < 1

arcoth(x) = 1
2 · ln

(
1+x
x−1

)
, |x| > 1

sinh(2 · arcsinh(x)) = 2x
√
x2 − 1

sinh(arcosh(x)) =
√
x2 − 1; x > 0

cosh(arsinh(x)) =
√
x2 + 1

Exam Question: Compute the Integral of f(x)

Let f(x) be a function with Fourier transform equal to:

f̂(ω) =

√
2

π

1

1 + ω2
., Compute the integral:

∫ +∞

−∞
f(x)dx =?

Solution: The Fourier transform is defined by

f̂(ω) =
1

√
2π

∫ +∞

−∞
f(x)e

−iωx
dx

therefore in particular: at ω = 0 : f̂(0) =
1

√
2π

∫ +∞

−∞
f(x) · e−0ix︸ ︷︷ ︸

1

dx

or equivalently we can compute the integral of:∫ +∞

−∞
f(x)dx =

√
2π · f̂(0) =

√
2π ·

√
2

π

1

1 + ω2

∣∣∣∣∣
ω=0

= 2

Exam Question: Fourier Series & find similar numerical series

Consider the function f(x) =
∣∣sin ( x

2

)∣∣.
a) Show that it is periodic of period 2π. For each x ∈ R :

f(x+ 2π) =

∣∣∣∣sin(x+ 2π

2

)∣∣∣∣ = ∣∣∣− sin
(x
2

)∣∣∣ = ∣∣∣sin(x
2

)∣∣∣ = f(x)

b) Compute its Fourier series.
f(x) is even ⇒ bn = 0. For x ∈ [0, π] we have

∣∣sin ( x
2

)∣∣ = sin
(
x
2

)
.

a0
(even)
=

1

π

∫ π

0

f(x)dx =
1

π

∫ π

0

sin
(x
2

)
dx =

1

π
· 2 =

2

π

an
( even )

=
2

π

∫ π

0

f(x) cos(nx)dx =
2

π

∫ π

0

sin
(x
2

)
cos(nx)dx =

=
2

π
·
2
(
2n sin

(
x
2

)
sin(nx) + cos

(
x
2

)
cos(nx)

)
4n2 − 1

∣∣∣∣∣
π

0

= −
4

π
·

1

4n2 − 1

Fourier series: a0 +

+∞∑
n=1

an cos(nx) =
2

π
−

4

π

+∞∑
n=1

1

4n2 − 1
· cos(nx)

c) Use the result to find the numerical series:
+∞∑
n=1

1

4n2 − 1
=?

f(x) is continuous everywhere ⇒ it coincides with its Fourier series:

∀x ∈ R :
∣∣∣sin(x

2

)∣∣∣ = 2

π
−

4

π

+∞∑
n=1

1

4n2 − 1
· cos(nx)

To calculate the above sum we want to get rid of cos(nx), which is
easily done in the point x = 0, in which cos(nx) = 1:

@ x = 0 : 0 =
2

π
−

4

π

+∞∑
n=1

1

4n2 − 1

Which means that:
+∞∑
n=1

1

4n2 − 1
=

1

2
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