e Sei f(t) = ! - cos(wt) = a = 2:

H Sei Z(f)(s) = F(s), then: L™ f(t) = F(s —a)
Analysis Il e e
y L(cos(wt)) = it = Z(f)(s) = Go27te
RijO Peedikoy” - rpeedikoyil@e’rhz.ch Die Lésung fur diese Art von Problem besteht darin, die Funktfion
1.4 LT von Ableitungen durch die Heaviside-Funktion « auszudriicken. In diesem Fall ist
e Lose das Anfangswertproblem Y ¥ =S i pqy =
Sei f € ¢~ (f ist n — 1-mal stetig differenzierbar) und f(n) stlickweise y(0) =1
1 Lapl T f ti stetig, dann gilt: 3ef, fro<t<2
apilace lransiormadrion 0, furt>2
0 0 0] 20 0 30 . Man wendet die Ubliche Vorgehensweise an: Zuerst findet man die
t F(s S t S n n S~ 1 Laplace-Transformierte der linken Seite der Differentialgleichun
1 1 t% a >0 F(:ill) cosh(at) - Z(f")(s) =s"2(f) - Z O] 2 9 9
s s —a =0
1 at 1 : a
! 2 e — sinblat) | 2o L(y — 5y) = L&) - 5L(y) = ¥ — y(0) — BY = (s = )Y — 1.
t? 3 cos(wt) | zioy u(t—a),a>0 | Le7° frallen > 1:
n , ) e Cas uralien > 1: Die gleiche Prozedur wird auf der rechten Seite durchgefiihrt:
t"nezzo | 4T sin(wt) el 6(t—a),a =0 | e
2 (f = sZ(f) - f(0 L(f(t)) =3L(e") —3L(c u(t — 2
1.1 Definitionen (f”) (s) 82 (f) = £(0) , (f () (e) 2(t‘;u( )
L") (s) = $"ZL(f)—sf(0) = f(0) _ 3 3
oo 1" _ 3 2 Y i s—1 (s—1) ’
Sei f:[0,00] = R, t— f(t): F(s) = Z(f)(s) :/ et F(t) dt L)) = s7ZL(f) —s7f(0) —sf(0) — f(0)
0 Die Lésung fUr Y (s) lautet
wobei f := inverse Laplace Transformation von F(s): f(t) := £~ 1(F(s)) . 5 o 5
Die Laplace-Transformierte existiert, wenn die Funktion f stlickweise 1.5 Integration Y (s) = 3, 4 8 _1 8 (e _ ¢ ) v
stetig ist und das Wachstum der Funktion, sodass [f(t)] < Me** gilt, 4 s-1 4 s-5 4 \s—-1 s-5 s—=5
eingeschrdnkd st z/t f(z)de = lp(s) Anwendung der inversen Laplace-Transformierten auf beiden Seiten
0 s fuhrt zu

1.2 Linearitct

3
y(t) = 7Z(et . eQ(u(t — 2)et_2 —u(t — 2)65“_2)) + €5t

[#ed )+ Bo) = o 20 6 260 | 1.6 t-shifting, Heaviside Funktion

wobei f, g Funktionen und «, 8 € R Konstanten sind. Die Linearitat gilt

auch fur die inverse Laplace Transformation. 1.7 Dirac’s delta funktion
1 ift>a e ?
Beispiel: Laplace Transform fa20, ult-a):= {0 te<a —tmo)=—3 FUr a € [0, 00) gilt:
f _ t =
o Sei f(t) =2t +e 6(t_a):={oo t=a
1 u(t — a) A-u(t —a) —u(t —b)-A A-u(t —a) = 2u(t —b) + u(t — c) 0 t#a

Z(f)=$(2‘t+1~et)=2-=5f(t)+-$(et)=s£2+5_1 ‘ N y ‘ b
A- 6 B -
s 1—14 4T_] ;‘ /0 (t—a)dt =1

a a b a b c
L) = 2 (24 . 1) _ %271 (%) _ lt‘l ‘ ‘ ‘ /oo g(t)o(t —a)dt = g(a) und:  ZL(5(t—a)) =e *°

5 6 s5 6 0

Beispiel:

o Sei F(w):#_‘_c, a,b,c e R Lf(t = a)ult — a)) = e~ ** F(s)
Fs) = —% = a/b _ _ a/b L(f()ult —a)) = e L(f(t +a)) e Sei f(t) = 2, dannist f(t — a) = (¢t — a)?, betrachte u(t — a) f(t — a)
bs+c¢ s+c/b  s—(—c/b)
- - e a 1 a _c, Tipps: Ergdnzen & Erweitern, Periodizit&t und Additionstheoreme der B )
L =& s—(-%) = s—(-%) Szt trigonometrischen Funktionen (Ch. 8.7 (5.13)). Zuerst s-shift und danach Lt -a)ft-a) =" L(f)=e "5

t-shift.




Beispiel:

eSeidieDGLy"” —y' +y =0, y(0)=0,9(0)=1
L -y +y)=20=0=2")-2H)+ZW
s°2(y) — sy(0) — 5 (0) —(sL(y) — y(0)) + L(y) =0
—_— =~ ~

- 1 _ 1 _ fL
Lt o 2l ey ey

2
Beispiel:

=0 =il

wlw
ol

y=2""(ZL@) = @étm(

ﬁy
~

. —2s 3
e Sei F(s) = 55742 = 6_25% =7
N
=2(t3)
1 Lt —2)3
$7I(F)=$’1(e’2—3)= s(t—2)7° t>2
6 st 0 t<2

1.8 Convolution (Faltung)

e = [ 1t nar

Properties:

1. frg=gxf

2. fx(g+h)=fxg+fxh

3. fx(gxh)=(fxg)xh

4 f+0=0xf=0

S fx1#f
6

. f* fisnotalways > 0

| £ +9)=2() 29

1.9 Ableitung der LT
Sei f stUckweise stetig und beschrénkt, dann gilt:
L) = (V" T2 (9)
LUFD) = L) =~ 2P
L7 (F(s)) = —tf(t)
1.10 Integral der LT

Existiert ferner lim, , o4 £, so gilt:

2 (@) - [T 2t

1.11 Lésen von DGL mit LT

1. DGL finden und LT anwenden (Z(y) = Y)
= Anfangsbedingungen einsetzen
v +ay + by =r(t)
(s*Y = sy(0) = 4/ (0)) + a(sY = y(0)) + bY = R(s)
2. Nach vy lésen
(s* +as+b)Y = R(s) + sy(0) + y'(0) + ay(0)

3. Inverse LT von ¢ (y) berechnen
Falls Anfangsbedingungen so gegeben y(a), y'(a), ... :
o Stubstituieren: t = ¢ + a
o y'+ay +by = r(t) = §'+ay +b§ = r(t+a) §(0) = y(a), §'(0) =
y'(a),. ..
e Normal lésen = Y — (%)
o RUcksubstituieren: =t — a; () — y(t)

1.11.1 Partialbruchzerlegung

1. Nullstellen des Nenners finden — n;

2. A + B + ..+ A

T—xq T —xo T—x,

&z 2 . . Bz+C
= Komplexe NS z;&z; von z? + p;x + q; : P g

4. Brache so erweitern, dass alles wieder auf einem Bruchstrich Platz
hat.

5. Bestimmen der Konstanten A, B, C, . . . durch Koeffizientenvergleich

Beispiel: Convolution

e Seit * sin(t) = fot sin(7)(t — 7)dT
fot(t - sin(7) — 7 - sin(7))dr = —tcos(7) — sin(7) + Tcos(‘r)\é
—tcos(t) — sin(t) + tcos(t) +t = t — sin(t)

Beispiel: Lésen von DGL mit LT

eSeiy +vy=06(t—m) +u(t—2m)sin(t), y(0)=1
LHS: 2 (y) + ZL(y) =sZ(y) -1+ ZL(y) = L(y)(s +1) -1
RHS: =e ™ 4 el™® S21+1

_ —1 —Ts 1 —27s 1 1
y=< (e s241 e (s2+1)(s+1) + S+1)>

— (b= e~ =) 4wt — 2y L (sin(t — 27) — cos(t — 2m) + e~ (E=2M)) 4 o=
2

t

1
=et 4 w(t — w)e’re_t + u(t — 27) — (sin(t) — cos(t) + 62"8_1)
2

Beispiel: Basic Laplace Transform

o Finde & (%) schreibe f(t) = sin(t)

Prife: limg—yo 2 — lim, o <51 — 1

Dann folgt: % (%) = [Z Z(in)(0)do = [ Fdo

™
= arctan(o)|° = 5~ arctan(s)

f(t)

1

e f(t)
Ut — a)
ft—a)U(t—a)
3(t)

§(t —a)
L55(t)
t" f(t)
(=)™ f(t)
—tf(t)

2 f(t)

[ @t - o
t" (n=0,1,2,...)
tT (x > —1 € R)
sin kt

cos kt

sin? kt

cos? kt

at

Zf(t) = F(s)

F(s—a)

—as

e F(s)

F"(s)
sF(s) — f(0)
s"F(s) — sV F(0)—
(),
F(s)G(s)

n!
snt1

T'(zx+1)
sz+1

k
82 + k2
s
s2 + k2
2>
s(s2 + 4k2)
2 + 2k
s(s2 + 4k2)
1

s —a

M

@

(©))

&)
®)
)
@

®

&

Q]
an
12

13)

4

15)

16

an

18

a9

20

@n



at

sinh kt

cosh kt

at bt

a—b

aeat _ bebt
a—b

teat

tneat

e sin kt

e cos kt

e sinh kt
e cosh kt
tsin kt

t cos kt

tsin kt cos kt

tsinh kt

t cosh kt

sin at
t

sinat - f(t)

cosat - f(t)

sinh at - f(t)

coshat - f(t)

a
s(s+a)

k
$2 — k2

S

v
(s —a)(s—b)

s
(s —a)(s—b)

1
(s — a2

n!
(s —a)ntt

k
(s —a)? + k2

s—a
(s —a)? + k2

k
(s —a)? — k2

s—a
(s —a)? — k2

2ks
(s2 + k2)2

s2 — k2
(52 + k2)2

ks
(52 + k2)2

2ks
(52 — k2)2

2 — k2
(s2 — k2)2

a
arctan —
s
1 . .
?(F(s —i4a) — F(s +ia))
i

%(F(s —da) + F(s + ia))

S(F(s — ) — F(s +a))

5 (F(s = a) + F(s +a)

22)

23)

@24

(25)

(26)

@7

(28)

@9

30)

@n

32)

33)

34

(35)

(36)

@7

(38)

(€]

(40)

éan

42)

In(at)kt “n(2) +7) 3
S

—a+/s
\/%e—ﬂ/u 67 (44)
z\ﬁa = et /u emavE 45)
/t f(u)du 5LTLF(s)n > 1 46)
0
t _ n—1f(a)
A f%dq %F(S) 47)
' f(u)du S%F(s)n >1 (48)
0
14(t) /  fwdu “9)
Convolution Product Formula:
wt wt eat _ ebt
e * e = =
a—>b
2 Fourier
2.1 Periode p

Eine Funktion f(z) ist periodisch, wenn
a) f fur gentigend viele z € R definiert ist und
b) eine Periode p € R, p > 0 existiert, so dass f(z) = f(x + p) fUr alle z.

Eigenschaften: Sei f(z) = f(x +p) = f(a-z)ist E-periodisch
1. Falls f(x) periodisch ist und stetig, dannist f(x) begrenzt.

2. Falls f(x) periodisch ist und glatt, dann ist f(z) und f(™) (z) begrenzt,
Hierbei haben beide Funktionen die gleiche Periode.

3. Falls f(z) oder £(™ (z) nicht begrenzt sind, so sind f(z) und (™) (z)
nicht periodisch.

4, Die Funktion f(t) = gt) + h(®) ist periodisch, wenn Z—Z eQ

_ kgV(pg.,pp)
Pf = 59T (pg.pn) "

2.2 Dirichlet Theorem
Bei Unstetigkeiten f (z7) # f (z1) konvergiert die Fourier Reihe zu:
3 (£ (2g) + £ (2)) = f (o)
2.3 Fourier-Reihe
Damit die Fourier-Reine gegen f(z) konvergiert, muss f(z) auf dem

ganzen Intervall definiert sein und fUr jede Unstetigkeit zo im Intervall muss
das Dirichlet Theorem gelten. Konst.: ag, an, b, € R, Periode: p = 2L.

f(z) =ao + i [an cos <%m) + b, sin <%m>]

n=1

L
ap = i/ f(z)dz
-L

1 [k nmw

an = — f(z) cos (—m) dx, wennn >0
L J_, L
1 L . nm

b, = I . f(x)sin (T:v) dx, wennn >0

Tipps: Orthogonalitat (Ch. 8.5 (S.11)), Paritégt (Ch. 8.3 (S.11)), Koeffizien-
tenvergleich und Partielle Integration

Beispiel: Fourier-Reihe

e Berechnen der Fourier-Reihe der Funktion f(z) = = — =z mit Periode
2r definiert auf (—m,7) = 2r=p=2L L=

1 [T 1 z?
ao:%/;”(ﬂ_z)dzzg(ﬂz_?) -
1 [™ 1 [7
G = 7/ (m — x) cos (ﬁw> dz = 7/ m cos(nz)dz
T ) T T )
™

1
—7/ z cos(nz)dx = 0
—m

s

1 [ L 2 cos(nm)
by = — (ﬂ—x)cos(—x)dx:...zi
nJ)_,. m

n

= a0

= f(z) =7+ Z 20%(717\') sin(nz)
n=1

==
o Sei f 2-periodisch {e ) Vo<l

ZrT —1<xz<0

H()=1() =1+ 5(a0) =) =

f(0%) =0, f(O*)=2=f(0)=%(0+2)=1

2.3.1 Gerade (even) Funktionen

Fourier-Reihe fUr gerade (f(z) = f(—=), Vo € D) Funktion f:

f(z) = ao + nz::l [an cos (%m)]
b, =0, ap= %/OL f(z)dx, an= %/OL f(x) cos (%x) dx

Zusatz: f(a-z) = 1 /oo A (ﬂ> - cos(wz) dw
a 0 a



2.3.2 Ungerade (odd) Funktionen

Fourier-Reihe fUr ungerade (f(z) = — f(—=z), Vz € D) Funktion f:
f(z) = Z [bn sin (%ac)}
n=1
ap=a, =0, b —E/Lf(x)sin<ﬂx)da:
0 n ) n L o 57

2.4 Expansion

Sei f definiert auf dem Intervall (0, L) und =z € R

copy-paste even odd
{ 5L i L ¢

Beispiel: Fourier-Reihe: Erweiterung gerade Funktion

o Erweitere 2z auf (0, 1) zu einer geraden 2-periodischen Funktion und
finde diie FourierReihe. Sei f, := {2”” z€(0,1)
—2z z € (—1,0

1
b, =0 ; a0:/2wda::1
0

1 b
sin(mTna
_ / sin(mnz) ;.
0 0 nm

1 .
an = 2/ 2z cos(nmz)dr = 4 (mw>
0

™

—a sin(7n) n cos(;r'r;m) ! _ 4cos(n27r)1— 1 _ 4(—11" 2— 1
™ mT=n mT™™=n mT=n
~———

=0

f@) =1+ gﬁ cos((2k — V)wx) (n =2k — 1)
k=1

2.5 Komplexe Fourier-Reihe

Sei f 2L-periodisch, dann ist die komplexe Fourier-Reihe gegeben als:

) )
f(z) =co+ Z Cn-e L °
n=-—oo
n#0
1 [E _imn 1 [E
Cn:i/,[‘f(z)‘e L% da; COZE[Lf(r)dm

ag = co; bn =i (en —c—n)
co =ag; cn=1/2-(an —iby); c—n=1/2-(an +1iby,)
e e =2cos(x); € —e ' = 2isin(x)

Tipps: Euler-Beziehungen (Ch. 8.9 (5.13) & Ch.2.9 (5.4))

An = Cn + C—nj

2.6 Minimum square error

Der minimale quadratische Fehler eines trigonometrischen Polynomes N-
ten Grades auf dem Intervall [—, =] ist:

,r N
E* :/ f2($)dg;77r<2ag+z (aieri))
-r n=1

2.7 Absolut integrabel

Eine Funktion f ist absolut integrabel, wenn gilt: [* | f(z)|dz < oo

2.8 Fourier Integral

Sei f stUckweise stetig in jedem endlichen Interval, absolut integrabel
und mit Links- und Rechtsableitungen an jeder Unstetigkeit.
Dann ist sein Fourier-Integrail:

flz) = /Ow(A(w) cos(wz) + B(w) sin(wz)) dw

Alw) = %/m F(v) cos(wv) dv
B(w) = %/w f(v) sin(wv) dv
2.8.1 Gerade (even) Funktion
Ist f gerade, so gilt:  f(z) = /0oc A(w) cos(wz) dw
A@ =2 [T f@eosen o i B =0
T Jo
2.8.2 Ungerade (odd) Funktion
Ist f ungerade, so gilt:  f(z) = /Ooo B(w) sin(wz) dw

Aw)=0 ; B(w)= %/000 f(v) sin(wv) dv

2.9 Fourier Transformation

Sei f absolut infegrabel, dann ist die Fourier Transformation von £ :

Bl — _ 1 /= o iwt
fl) = 3(Hw) = —= /_ e ar

Tipps: Euler-Beziehungen (Ch. 8.9 (S.13)).davon meist bendtigten Formeln
finden Sie hier:

+ix

e = cos(x) £ 7 - sin(x)
eiw 1
e:ti'/rn 1"

Eigenschaften:

1. S(af + Bg) = aF(f) + B3(9)

2. Sei f stetig auf ganz R und lim,—, — oo f(z) = 0 = limg_, oo SOWi€
f’ (bzw. f'") absolut integrabel, so gilt:

§ (1 (@) = iw§(f(2)
3 (/@) = —w?F(f(2))
5 (@) = =3 (7 ()
3 (@ f (@) = -F"(f(x))

3. Sei f, g stUckweise stetig sowie beschré&nkt und absolut integrabel,
so ist
S(f*g9) =v2r-F(f) 5(9)

() *Flg) =V2er-F(f-9)
4. Weitere nutzliche Transformationen:
§ (w) = i, 1)

3 (t?'ux) =23 (ug)

M

7 —wz
—w ( 4

2

F (meiam2) (w) =

(2a)3/2 ¢
2
_ L _bw?2 x —-Z
! <—zwe b ) = 7(21))3/2@( 4*’)
z-Shift
F(f(z—a)) = e “F(f(x) = e "“F(w)
w-Shift

Fw-a) =F (<" @)
2.9.1 Nitzliche Integrale

R 2
0/ e Tdr =7

b 1
0/ ——dr =7
Lo 1+ 22

2.10 Inverse Fourier Transformation

Die inverse Fourier Transformation von g ist:

-1 7# had weiwm W
5 (g)(m)‘m/_ocg“ a




Es gilt, wenn g = §(f): .
@ =1

5
Beispiel: Fourier Transformation

set ) = {7 G

. 1 e b, L Y e
f(w):\/TTT/_oof(w)e da:f\/??/oe e

) 1 :
_ L /1 o= (i) g0 O _ 1= e~ (1Fiw)
V2w Jo Vor —(1 + iw) 0

1+ fw

2.11 Diskrete Fourier-Transformation (DFT)

Definition: Die Funktion f(¢) kann als Summe von komplexen Exponen-
fialfunktionen geschrieben werden: f(t) = co + cie™ + cae?™ + ... +
cn_le("*”“, wobei die ¢, die Fourier-Koeffizienten sind. Diese Form I&sst
sich durch eulersche Identitéten weiter vereinfachen.

Die DFT fransformiert N diskrete Werte {fo, f1,..., fv—1} in N Frequen-
zwerte {co, c1, ..., cn—1}. Die Formel lautet:

Matrixform: ¢ = M. F, wobei M~ die inverse Fourier-Matrix ist, deren

Eintrage (M~ 1), = &wy?* sind mit wy = e2™/¥,
Beispiel: Diskrete Fourier Transformation
Die Inverse der Fourier-Matrix fir N = 4 mit wy = e27%/4 = 4 ist:
wg wg wg wg 1 1 1 1
-t o bo|wd wil wi? w1 |1 - -1
N |wd w;? wyt w;® 4 |1 -1 1 -1
wg w4_3 w4_6 w4_9 1 [ —1 —1
Gegeben F = {2,0, 6,4}, berechnen wir
1 1 1 1 2 11
_ 1 1 —3 -1 0 1 —44 3¢
— 1 . —_ . —_ -
C=M—"-F 4 (1 -1 1 -1 6 4 5
1 i -1 —i 3 —4 — 334
\

2.12 Inverse Diskrete Fourier-Transformation (IDFT)

Definition: Die IDFT fransformiert N Frequenzwerte {co,c1,...
zurlek in N diskrete Werte { fo, f1, ..., fn—1}. Die Formel lautet:

JEN-1}

N-1
fi= chwugf, wN = e WW

k=0
Matrixform: F = M - C, wobei M die Fourier-Matrix ist, deren Eintrage
Mjy, = w?\f sind mit wy = 2™/ N,
Tipp: Die Fourier-Matrix und ihre Inverse sind symmetrisch. Die Inverse
kann durch komplexe Konjugation erhalten werden, wobei der Vorfaktor
+ beachtet werden muss.

2.13 Fast Fourier-Transformation (FFT)

Definition: Die FFT ist ein Algorithmus zur Berechnung der Diskreten Fourier-
Transformation (DFT). Sie reduziert die Komplexit&t der Berechnung von
O(N?) auf O(N log N).

Algorithmus: Angenommen, wir haben N diskrete Werte
{fo, f1,--., fn—1}. Die Schritte zur Berechnung der FFT sind wie folgt:

1. Bestimme den Wert von wy,, wobei M = & und wy, = AT

2. Berechne die geraden und ungeraden Koeffizienten ¢(©) und c(©)
unter Verwendung der Formeln

) ©
o = {Cgo)} =My f@, und @) = {Cge)] =My
€1 €1

wobei £(¢) und £(° die Vektoren der ungeraden und geraden Indizes
von f sind.

3. Bestimme den Wert von wy = e ¥ .
4. Berechne die Koeffizienten ¢, fur k < M mit

( © | ke (e))’
und fur die Koeffizienten cy4p mit & > M

1
ChtM = 3 (CI(cO) _ w;}kcze)) .

Beispiel: Fast Fourier Transform mit N = 4

CL =
)

Wir berechnen die FFT fur N = 4 diskrete Werte {fo, f1, f2, fs}. Die
Schritte sind wie folgt:
1. Wirhaben N = 4und M = & = 2, daher ist w = wy = & =
@ = =1,
2. Bezeichnenwir F = [fo f1  f2 f3]T. Folglich erhalten wir
(©) _ ap=140) _ L {1 1| fol _ 1 [fo+f2
o =M *2[1 —1] {fz =5 [fo—fo)’
(@ _ ap=1pe _L[1 1| [fa] _L[Aat+Tfs
o =M *2[1 Hf372 fi-fa
3.FUr N —4ISTwN—e4=e%=
4. Die Koeffizienten ¢y, fur k < 2 sind
. (0) (e) l fo + f2 f1+f3
©=3 ( + 2 ( 2 )’
_ L1/ i) _1(fo=f Si-fs
Cl_2<01 +ch1)_2 2 2
und die Koeffizienten cy s flr & > 2 sind
i 0@y L(fotfa fitfs
6272(60 “’ch’)’z 2 2 ’
_ L1/ (0) fo—Ffo  f1— s
Cc3 = 2 (Cl ’LUNC ) 2 2 3 2 .
Unter Verwendun% der gegebenen numerischen Werte F =
[fo f1 fo f3]° = [2 0o 6 3]7, kénnte man noch ¢ =
[co er co e3]T=[2 -1-3i 2 —14 347 berechnen.

2.14 Inverse Fast Fourier-Transformation (IFFT)

Definition: Die Inverse Fast Fourier-Transformation (IFFT) ermdglicht es,
aus den Frequenzkoeffizienten {co,c1,...,en—1} die urspringlichen
diskreten Werte { fo, f1, ..., fzv—1} effizient zu rekonstruieren.
Algorithmus: ~ Angenommen, wir haben N Frequenzkoeffizienten
{co,c1,...,en—1}. Die Schritte zur Berechnung der IFFT sind wie folgt:

1. Bestimme den Wert von wy, wobei M = & und wy = 3

2. Berechne die geraden und ungeraden Koeffizienten F(¢) und F(*)
unter Verwendung der Formeln

(e) (o)
F Z {f?e)] =M, und F© = [; ] = My,
1 1

wobei ¢(®) und ¢(®) die Vektoren der ungeraden und geraden Indizes von
C sind. o

3. Bestimme den Wert von wy = e''V .

4. Berechne die Koeffizienten f;, fUr k < M mit

S = (1 +wies?),
und fUr die Koeffizienten fnr mit k& > M

Srernr = ( - wfvf;ie)) :

3 PDEs

Eine partielle DGL (PDE) ist eine Gleichung, in welcher eine Funktion «
sowie einige partielle Ableitung von « involviert sind.

¢ Linear: falls « und die partiellen Ableitungen mit Grad = 1 (Potenz)
erscheinen und nicht miteinander multipliziert werden. z.b. linear:
Ugy + Uz + ust = g(z,y,t)
z.b. non-linear: ugy - u, + uit = g(z, y, t)

¢ Homogen: wenn sie linear ist und wenn jeder Term « oder eine par-
tielle Ableitung enthdilt.

e Ordung: die maximale Ordnung aller involvierten Ableitungen.

¢ Dimension: number of space variables

3.1 Wichtige PDEs

¢ Eindimensionale Wellengleichung:

otz ba2
(linear, 2.0rdnung, homogen, hyperbolisch)
¢ Eindimensionale Warmegleichung:

ou 2 0%u

ot ¢ oz
(linear, 2.0rdnung, homogen, parabolisch)

¢ Zweidimensionale Laplacegleichung:



8%u
Oy?

8%u

g -0
Ox2

(linear, 2. Ordnung, homogen, elliptisch)
¢ Zweidimensionale Poissongleichung:

8%u
oy?

8%u
Ox?

= f(z,y)
(linear, 2.0rdnung, inhomogen, elliptisch)
¢ Zweidimensionale Wellengleichung:
+ o)
oy?

(linear, 2.0rdnung, homogen, hyperbolisch)

8%u 2 8u
ot? ¢ oz?

¢ Zweidimensionale W&rmegleichung:

+ 8%u
0y?

(linear, 2.0rdnung, homogen, parabolisch)

ou 5 [ 0%u
22
ot Ox2
¢ Dreidimensionale Laplacegleichung

8%u
022

8%u
oy?

(linear, 2.0rdnung, homogen, elliptisch)

8%u

- =0
Ox2

3.2 Lineare PDE 2.0rdnung
Eine lineare PDE 2.0rdnung kann man in die Form
Atgy +2Bugy + Cuyy = F (2,9, u, ug, uy)

Eine lineare PDE 2.0rdnung heisst

¢ hyperbolisch, falls AC — B2 < 0

e parabolisch, falls AC — B2 =0

e elliptisch, falls AC — B2 >0

¢ mixed type, falls je nach Vorzeichen anders
e Seiu(z,y) = zsin(z + 2y), zeige: v l6st u + vz = Luy,

Uy = sin(z + 2y) + z cos(z + 2y)
Uge = cos(x + 2y) + cos(z + 2y) — zsin(z + 2y)
Uy = 2z cos(x + 2y)
| 2z cos(z + 2y) iy

= U+ Upy = 2cos(z +2y) = —MmM— = —
xT xT

3.3 Eindimensionale Wellengleichung

FUr eine eindimensionale Wellengleichung der Form u;; = c2u,, und den
Randbedingungen, = € [0, L]

w(0,t) =u(L,t) =0
u(z,0) = f(z)
ut(z,0) = g(x)

finden wir eine allgemeine Losung:

u(z, t) = i (B, cos (Ant) + Bf. sin (Ant)) sin (%z) M
gt
An = C"T” @
Fz) = ni; B sin (%x) )
g(x) = :1 B\, sin (’LL%) o)
Bn = % OL F(z) sin (%z) de ®)
- % OL g(x) sin ("Lix) da ©
3.3.1 Vorgehen 1

e Berechne \,, mit (2)

e Bestimme B,, mit (3)
wenn das nicht funktioniert, benutze (5)

e Bestimme B} mit (4)
wenn das nicht funktioniert, benutze (6)

e Setze allein (1) ein

Beispiel: Vorgehen 1: Eindimensionale Wellengleichung

Ut = dUzy

u(0,t) = u(L,t) =0
u(z,0) = sin(z)
ut(z,0) =0

c=2&mit (2) X\,, = 2n. Mit (3) finden wir nichts = mit (5):

o L&se flr L = m:

2" i 1/ cos((1 — n)x) — cos n)x))dz
B, = ;/0 sin(z) sin(nz) = - -/0 (cos((1 )x) (1 +n)z))d
_1 (sin((l —n)z) sin((1+ n)x))

—

K
=0, flrn>2

1+n @

1—n

3

Mit (3) folgt:
f(z) = sin(z) = Z By, sin <n—;x) = Bysin(z) = By =1
n=1

Aus (4) sehen wir direkt, dass By, = 0

nm

= u(z,t) = By cos (Apt)sin (Tw) = cos(2t) sin(z)

3.3.2 Vorgehen 2: Separation der Variabeln

u(z,t) = F(z)G(t)
upe = FGy  uge = F'G  — FG = *F'G
é _F/,_k. F//:kF
G F G = 2kG
Randbedingungen finden:
u(0,t) = F(0)G(t) =0Vt > 0= F(0) =0
uw(L,t) = F(L)G(t) = 0Vt > 0 = F(L) = 0
= u(z,t) = F(z)G(t)

N o F'' () Gt
L&se mit (1) Allgemeine Losung: =—-——" =

DAl % Fw ~ G

AreVEr 4 AjeVFe k>0

F(x) =< Ay cos(\/Wx) + Aoy sin(\/Wx) k<O

Az + As k=0

Ble\/Et + Bze—\/Et E>0

G(t) = { By cos(y/|k|t) + Bz sin(+/|k|t) k<O

Bt + Ba k=0

Beispiel: Vorgehen 2: Separation der Variabeln

e Finde eine Lésung u(z, t) der PDFiu, + us = 0.
Mit dem Ansatz u(z, t) = F(z)G(t) folgt:

%F’(z)G(t) + F@)G(t) =0

1F'(z)  G(t)
2 F(z) ' G(t)
 Fi@) _ GO _ _
Vz,t: 2F(@) — G konst = X\
1 dF dF
Fwde T F D

= F(z) = e®*"Cy  G(t) = Cae ™

u(z,t) = F(z)G(t) = C1e? " Cre™ = ce*®7Y

3.4 Eindimensionale Wellengleichung - d’Alembert

Sei uyy = c2ug, Mit folgenden Nebenbedingungen (Cauchy Problem):

Ut = Uas, zeR,t>0
u(z,0) = f(z), =€R
ut(z,0) = g(z), z€R

Die Alembert-L&sung ist dann gegeben als:

x+ct
(@, ) = S (o + o) + f(z — o)) + i/ o(s)ds

1
2 2c et



Beispiel: Eindimensionale Wellengleichung - d’Alembert

o Sei uty = ug, Mit u(z,0) = 121+1 und uy(z,0) = —
Die D’Alembertsche Losung ist mit ¢ = 1 dann

1 1 1 1 z+t
et = <<w+t) sy1t <w—t>2+1) *5/H (~1)de

1 1 1 .
_5((a:+t)2+1+(z—t)2+1)7

3.5 Normalform

Mit geeigneter Substitutionen kann eine PDE zweiter Ordnung in
Normalform gebracht werden, d.h.:

Uy = F (0, W, Uy Uy Unyy) hyperbolisch
Uy = F (0, W, U, Uy, Uy ) parabolisch
Uyy + Uww = F (U, W, Uy Uy, Uayy) elliptisch

3.5.1 Vorgehen
Gegeben PDE zweiter Ordnung in {z, y}

¢ Bestimme A,B,C und die zwei Losungen der charakteristischen Gle-
ichung A (y')* — 2By’ +C =0

e Nun kann man die ODE nach der Steigung v’ auflésen und erhdilt:
y = Bj:\/zi2—Ac = A1

e Da A.B und C Konstanten sind, erhalten wir eine gewdhliche DGL
mit zwei verschiedene Losungen: ¢(z,y) = C1 = y1 —1 z, Y (z,y) =
C2 =Y2 —2°T

o ¢(x,y) und ¥(x,y) werden als Charakter.istiken bezeichnet. Nun

kénnen zwei neue Variablen v,w definiert werden. Hierbei ist u =
Die Definition ist fur jeden Typ von PDE unterschiedlich (siehe unten)

e Berechne die Ableitungen der urspringlichen Gleichung mit v und
w. Die Kettenregel ist hier extrem wichtig. Sehr nutzliche Ableitun-
gen fUr u = v(z, y) - w(z, y) sind weiter unten.

e Setze adlles in die PDE ein und erhalte die Normalform

¢ Integriere entsprechend und substituiere zurtick, um die allgemeine
Lésung zu erhalten

hyperbolisch: v = ¢(z,y) w = P(z,y)
parablisch: v=gx w = Y(z,y)
elliptisch: v=glp(@,y) + v y)] w=3lel@y) - b y)
Uy = Uy * Vg + Uy - Wa,
Uy = Uy * Vy + Uy * Wy,
Ugy = Uyy ~v§ + Uy Vgz + Unw ~wi + U - Waz + 2V * Wa * Uy,
Uyy = Uyy ~Uz+uv CVyy + Uy ~w§+uw CWyy T+ 20y Wy Uy

Uy+uv'

+ (vy - we + Ve

Ugy = Uypy * Vg Vay + Unw * We * Wy + U * Way

Wy ) * Uy -

Beispiel: Normalform

Bringe uqe + 2usy = —4e? in Normalform und gib die allgemeine L6-
sung an
A=B=1, C =0 charakferistische Gleichung (y')? — 2y’ =0

Lésungen der char. Gleichung: y; = 0und y5, = 2
Fall1:y" =0 — dy = 0dz = y = C4
Fall2:y' =2 - dy=2dz = y=2x+Cs — Cs =y — 22

v=C1 =yundw=Cy =y — 2z

Vorbereitung: v, = 0;v, = 1w, = —2;wy, =1
du du dv du dw
e dr = dv dz ' dw dx = UvVe + UwWe = —2uy
Uge = —2UwoVs — 2UwwWe = dUww
Upy = —2UwoVy — 2UpwWy = —2Uwy — Uww

F = —4e¥ = —4¢"
Uww + 2 (—2Uwy — 2Upw) = —4€” = Uy, = e’ (Normalform)

u(v, w) = // Uy dwdv = // e’dwdv = / [w- e’ + @(v)] dv

—w- e’ +p(v) + p(w)

= u(z,y) = (y — 2x)e” + p(y) + P(y — 22)
—_—
min. 2x stetig diff'bar

3.6 Wdarmeleitungsgleichung (Heat equation)
3.6.1 Vorgehen 1:

Sei uy, = c*ug, Mit Randbediungungen w(0,t) = wu(L,t) = 0 und
u(z,0) = f(z) auf =z € [0, L]. Via Fourier-Reihe erhalten wir die Losung:

oo
. (nm —22¢
u(z,t) = Z B,, sin (TI) e Mt
n=1
cnm

5 (L
;3 Bn= 7/ f(z)sin (Ez) dx
L /o L

= Manchmal ist B,, auch Uber Koeffizientenvergleich bestimmbar!

Ap =

3.6.2 Vorgehen 2:

Sei uy = c?uz, Mit Randbedingungen wu,(0,t) =
u(z,0) = f(z) nuraufz € (0,L) .

ug(L,t) = 0 und

e Nimm den Ansatz u(z, t) = F(x)G(t), separiere F und G, bestimme
die Konditionen der Randbedingungen (der ODE fUr F und G )
durch Betrachten von w,.

o Lose die ODEs fUr F und G, setze sie zu u,, zusammen
¢ Verwende Superposition und schreibe
u(z,t) = Z Unp (z,t)
n=0

e Benutze weitere Randbedingungen und vergleiche Koeffizienten in
w mit denjenigen der Fourier-Reihe der 2L-periodischen geraden
Fortsetzung von f

Allgemeine Lésung

oo
—c2n2¢
Z ay cos(nx)e

n=0

3.7 Zeitunabhdngige n-dim Wdarmeleitungsgleichung

Die zeitunabhdngige n-dimensionale Wdarmeleitungsgleichung w: =
c2Au = ¢?VZu kann auf die n-dimensionale Laplacegleichung Au = 0
reduziert werden. Fir n = 2, Randbedingungen «(0,y) = u(a,y) =
u(z,0) = 0und u(z,b) = f(z) Mit (z,y) € [0, a][0, b] sprechen wir vom
Dirichlet-Problem.

Dessen Losung mit Separation und Superposition ist:
= . nm . nm
u(z,y) = ,?:1 Ay sin (70, a:) sinh (—a y)
2 @ nm
Ap = —— sin [ —x ) d
asinh (ZZb) /0 f(aysin ( a v) do

= Manchmal ist A,, auch Uber Koeffizientenvergleich bestimmbar!

Beispiel: Zeitunabhéngige n-dim Wéarmeleitungsgleichung

o Sei uy = ug, aAuf z € [0, 27)

mit uz (0,¢) = ugp(m,t) =0,u(z,0) =zaAuf0 < z < 7
. [ F'=)F, G=)G

Mit v = F - G erhalten WII’{ F'(0) = F/(n) = 0

e A > 0allg. Losung F(z) = AeV ® + Be= VA"
Randbedingungen ergeben: A = B = 0 — uninteressant
e )\ = 0: erhalten wir F(z) = 0 — uninteressant

e )\ < 0:allg. Lodsung F(z) = A cos(pz) + B sin(pz) wobeip = v/=X.

Mit F’(0) = —Apsin(0) + Bpcos(0) = 0 finden wir B = 0 und mit
F'(r) = — Apsin(pr) =0=p=p, =n
Unterdessen ¢ = —p2G und G(t) = C - e~ Pt

2
e Pnt

— Gn(t)=Chp -

e u,(z,t) =F, -G, = A, cos (pn) Gne_p%t =g D)y cos(nz)e_"Qt und
u=327 ) un

o Weiter gilt u(z,0) = >2>° |
periodischen Funktion:

1 T T
Dozf/ zdr = —
7 Jo 2

(D" =1 = {24 Zz§:+1

D, cos(nz) = z. Koeffizienten der 2x-

Dy, = 2 [z cos(nz)de = 25

-7

4 oo
= u(z,t) = T Z: % 1 1)2 cos((2m + l)w)e(_2m+1)t

m

g
2




3.8 Wdrmeleitungsgleichung eines unendlichen Gebietes

Sei ur = c2uge Mit u(z,0) = f(x) auf einem unendlichen Gebiet (z €
R,t > 0). Dann ist die L&sung:
Vorgehen mit Fourier-Integral

u(zx,t) = /;0 (A(p) cos(pzx) + B(p) sin(px))efci’p%dp
A(p) = %/‘00 f(v) cos(pv)dv

B =+ [ f)singo)ds

™

Bemerkung: Achte auf gerade/ungerade Funkfionen

Vorgehen mit Fourier-Transformation
Seiuy = uge Mt F (Uze) = —w?i, F (ug) = iwd UNd F (uy) = & F(u) =
4 k&dnnen wir die Gleichung fransformieren:

2 2.
t=—cwu

33

dann diese ODE fur 4 16sen, die fransformierte Anfangsbedingung ein-
setzen und u = F~1(a) bestimmen.

Bemerkung: F ist immer in Bezug auf .
Vorgehen mit Formel:

u(z,t) =

1 e z—v\?
S/t /_w f(oyexp {7 (2cﬁ> }d”

Beispiel: Vorgehen mit Fourier-Integral

" " 2 0<z<m
o Seiu; = mit ,0) = -
ue = tes Mit u(z, 0) {0 sonst
1 "" 2 si "
A(p) = — / 2 cos(pv)dv = 7M = — sin(pn)
T Jo ™ P 0 TP
1 [T 2 —cos(pv) |™ 2
B(p) = — 2sin(pv)dv = —— | = — (1 — cos(7p))
7 Jo ™ P 0 Tp
S (o 6) = 2 /oo sin(pr) cos(pz) + (1 — cos(pm) sin(pzx)) e_Pztdp
7 Jo p

Beispiel: Vorgehen mit Fourier-Transformation/Formel

2
o Seiuy = dugy, UNd u(z,0) = f(z) = V2e™ 1

@ = —4w?a und die allg. Lésung: @ = C - e~ 4@t
Mit der Anfangsbedingung folgt @ = a(w, 0)e=%“*, nun a(w,0) = f =
e=«? somitist & = e~~>(1+4%) mit der Formel

e 2 2
/ e—(ak +bk+c)dk _ %e%&_c
a

—0

folgt dann
2
uw=F '(a)= ed+16t

1
V2(1 + 4t)

3.9 Dirichlet auf dem Kreis

Far die Laplace-Gleichung Aw = 0 auf der geschlossenen Kreisscheibe
D mit Radius R und einer Randbedingung...

o ... u(R,0) = f(9) auf oD finden wir die Lbsung

u(r,0) = Ao + Z r" (A, cos(nf) + By, sin(nh))

n=1

Wir bestimmen A,, und B,, mit Koeffizientenvergleich oder sonst mit:

1 27
A= o [ 1()de
™ Jo
1 27 1 27 X
An = fom /0 F(§) cos(ne)dg,  Bn = 7— /O F(€) sin(n€)de

o ...u,.(R,0) = f(0) auf 8D gilt die Lésung

u(r,0) = Ao + Z r" (A, cos(nd) + By, sin(nh))

n=1

1 2w

IS

mit A = ﬁ /0 T H(©) cos(né)de, By —

nRn—1gx

und A ist eine nicht ndher bestimmibare Konstante.

3.9.1 Bemerkungen

o Koordinatentransformationen

x = rcos(0) und r=\/x2+y2
y = rsin(0) 6 = arctan (£)

¢ Die Laplace-Gleichung (fur r € [0, R), 6 € [0, 27))

. 1 1
Uge +Uyy =0 WIrdzu wup, + Tues T ur = 0

Beispiel: Dirichlet auf dem Kreis (L6sung auf dem Rand)

e Sei D = {(z,y) € R* | 2> +y* < 1}. Finde die Losung der Laplace-
gleichung mit u(z, y) = 222 + y auf dem Rand (8D)
w(z, y) = 22> + y = 2r2 cos? () + rsin(h) "Z! 9 cos? (0) + sin(0)

= (cos(0) + 1) sin(0)
u(1,0) = f(0) =1+ cos(0) + sin(0)

< i (A cos(n8) + B, sin(nd))
n=0

— Agp=1,B; =1,A, =1dlleandermn A,,, B, =0

u(r,0) = 1 + rsin(8) + 72 cos(26)

F(&) sin(ng)dg

Beispiel: Dirichlet auf dem Kreis (Lésung auf dem Kreis)

¢ Finde die Lésung der Laplacegleichung auf dem Kreis D mit R = 2
und u,-(2, 0) = cos(30) auf D.
Es gilt u(r,0) = Ag + 322, r™ (A, cos(nb) + By, sin(nd)), Also:

ur(r,0) = Z nr™ " (A, cos(nb) + B, sin(nh))
n=1

ur(2,0) = Z n2" " (A, cos(nb) + B, sin(nh)) e cos(36)

n=1

B, =0,n =3 — cos(30) =3 - 23-1 4, cos(36)
= A3 = 75, A, sonst =0

1
u(r,0) = Ao + ﬁrg cos(360)

Ay ist nicht bestimmbar

3.10 Poisson-Integral-Form

e Sei Au = 0und u(R, 0) = f(0) auf dem Kreis mit Radius R. Dann ist die
Lésung mittels Poisson-Integral-Form gegeben als:

1 27
u(r,0) = - /0 K(r,0, R, 9)f () dio

R? — 12

R2 — 2rRcos(0 — ¢) + r2

Beispiel: Poisson-Integral-Form

Sei u(1,0) = f(0) = cos(30) auf dem Rand der abgeschlossenen Ein-
heitskreisscheibe. Finde den Funktionswert von « im Ursprung, ohne
die Lésung u explizit zu berechen:

Es gilt K(0,0, R, p) = 1. Poisson-Formel:

Poisson-Integral-Kern K (r, 6, R, ¢) =

27
u(0,0) = u(0,0) = - /0 K(0,6,1, ) (¢)di

™
=0

-

1 27T

1
= — cos(3p)dp = — sin(3p)
27 Jo 6m

3.11 Harmonische Funktionen

Eine Funkfion, die die Laplace-Gleichungs Au =
harmonisch auf dem Gebiet D.

Maximumsprinzip: Nimmt auf dem Gebiet D die harmonische Funkfion «
ihr Maximum im Innern von D an, so ist sie konstant.

Somit genugt es, fur eine harmonische Funktfion auf D ihr Maximum nur
auf dem Rand 6D zu suchen.

Ist w harmonisch auf der Kreissscheibe mit Radius R, so gilt der Mittelwert-
satz insbesondere in folgender Form:

0 auf D erflllt, heisst

27

1
£(0,0) = SR g f(R,0)do



Beispiel: Harmonische Funktionen

e Finde das Maximum von f(z, y) = x+y auf der Einheitskreisscheibe.

f(r,0) = r(cos(8) + sin(9)) — harmonisch, Suche auf Rand:
f(1,0) = cos(0) + sin(0)

Ort des Maximums: 2, f(1,60) = cos(9) — sin(d) = 0 — 6 = Z Das
Maximum ist bei (1, g) respektive (%, %) und der Funktionswert
ist v/2.

Randmaxima iiberpriifen! — wenn f auf (0, =) definiert ist muss man
0 und 7 anschauen.

3.12 Well-posed und ill-posed Probleme

Wir nennen ein Problem well-posed, falls:
¢ Das Problem hat eine Losung. (Existence)
e Die Losung ist eindeutig. (Uniqueness)

¢ Die Lésung ist von Anfangsbedingungen und Randbedingungen
abhdngig. (Stability)

Ist eine dieser Bedingungen nicht erfullt, ist das Problem ill-posed.

3.12.1 Das Neumann Problem auf Region D

Au=V3u=f aufD
=y auf D.

hat eine eindeutige Lésung wenn [ f = [, 9.
Beispiel: Neumann problem

V2u:f7 ian,
Su—g, OndDy,

with D, being the disk of radius 2 centered at 0 and f and g are two
given functions such that

4 Wellengleichung

5 Wdrmeleitgleichung

_ 2
Uty = C Ugy

X" T
Separationsansatz: u(z, t) = X (z)T(t) = < = T

41 a=0

411 a=0=X"=0
X(z) = Az + B
X'(z)=A

412 a=0=T=0

T(t)=Ct+ D

Tty =C
42 o> 0
421 a>0=X"-aX =0

X(z) = AeVO® 4 Be™Vo®

X'(x) = VoaAeV® — \JaBe VT
422 a>0=T—ac®T =0

T(t) = Ce®Vat 4 pemeVat

T(t) = cvaCeVet — c\/caDe eV

4.3 o < 0 (ambesten o = —p?,

p € R definieren)

f(z)dz =3, and g(z) dz = 2.
Dy 9Dy
Solution: There is no solution.
V3u(z) do = f(z)de =
D2 D2
div(Vu(z)) dz = f(z)de =
Do Do
Vu(z) -ndzx = f(z)dz =
oDy Dy
/ % dx = f(z) de =
8Dy on Doy

/ g(x) dx = f(z)de = 2 # 3.
Dy Dy

431 a<0=>a=—-p?, X" +p’X=0
X (z) = Asin(pz) + B cos(pz)

X'(z) = pA cos(px) — pB sin(pz)

432 a<0=a=—p? T+p**T=0
T(t) = Csin(pct) + D cos(pct)

T(t) = peC cos(pct) — peD sin(pct)

2
Uy = C Uga

) X" T
Separationsansatz: u(z,t) = X (x)T(t) = X T T =
51 a=0
511 a=0=X"=0

X(z) = Az + B
X'(z)=A
512 a=0=T7T=0
T(t) = C
T(t) =0
52a>0
521 a>0=X"—-aX =0
X(z) = AeVo® 4 Be~Vo®
X'(z) = VaAeY*® — \JaBe Vo
522 a>0=T—ac’T=0
T(t) = Ce ot
I 2 czat
T(t) =Cc ae
53 a <0 (ambestena = —p2, p € R, definieren)

53.1 a < 0= a=—p?,

X" +p’X =0

X (xz) = Asin(pz) + B cos(pz)

X'(z) = pA cos(px) — pB sin(pz)

532 a < 0= a=—p?,

2 2
T(t) = Ce “P°F

. 2.2
T(t) = —Ccp®e ¢ Pt

T+ /p*T =0



6 Laplace-Gleichung

2
Viu = Au = Uz z; + Uzguy + .-

X// Y//
Seperationsansatz: u(z,t) = X (z)7T(t) = <~ ="y =°

6.1 a=0
6.1.1 a=0=X"=0
X(z) = Az + B
X'(x)=A
612 a=0=Y"=0
Y(y)=Cy+D
Y'(y)=C
62 a>0
621 a>0=X"—-aX =0
X(z) = AeVo® + Be~Vew
X'(z) = VaAeY®® — JaBe V"
622 a>0=Y"4+aY =0
Y (y) = Asin(v/ay) + B cos(vay)
Y'(y) = VaA cos(v/ay) — vaB sin(vay)
63 a<0 (am besten o = —p?, p € R definieren)
631 a<0=X"4+p’X =0
X (xz) = Asin(pz) + B cos(pz)
X'(x) = pAcos(pz) — pBsin(px)
632 a<0=Y" —p?’Y =0
Y (y) = AePY + Be PV
Y'(y) = pAe?? — pBe™*Y
6.3.3 Anmerkung:

Eye® — E1e~ Y = Essinh(ay)
Ee® + Eie” *Y = FEj cosh(ay)

6.4 Allgemeine Lésung der PDE

u(z,y) = [C cosh(kz) + D sinh(kz)][A cos(ky) + B sin(ky)]

6.5 Superposition eines Dirichlet Problem

u(x,b)=0 u(x,b)=h(x)
o [(A) (B)
N - s I g
> Vu=0 i<_ B Vzu =0 <
95 Il e g
uCb)=h00 © > s
~[(*
3 (*) s U(x,0)=fi(x) u(x,0=0
S g
h 2 s
N Viu=o0 ‘g = @
S = u(x,b)=0 u(x,b)=0
S <
s[© _[@ .
ux0)=h(x) 5 £ I g
'Ii\‘ Viu=0 NS 5‘ Viu=0 E
o Il = N
5 © ° S
u(x,0)=0 u(x,0)=0
() = 307 Asin("TE) sinn O
= mn 111 —
ui(z,y ey mS a s a

a 111127 /af (z) si (L )
n=— ("ab) ) 1(z) sin dx
Lésung fur B:

nmwy

oo . nmTT,
uz(z,y) = an:l B, sm(T) smh(T)

2 ¢ . nmwx
B, = m/{) fa(z) sm(T)dI

(a—2)

nw nm
ug(z,y) = Z:ll C,, sinh( " )sin(Ty)

2 b e
Cp = I)SIT("'%/() gl(y) SIH(T)dy
Lésung flr D:

nrx ) sin( n;ry )

ua(z,y) = Z:O:1 Dy, sinh(

2 b iy
Dp= —— (T
bsinh(L‘gG)/Og2(y)bln( b ) y

Lésung fur A+B+C+D=(*):

u=uy +u2 +us+ug

7 Dirichlet-Problem auf einem Kreis

Man kann das Problem in Polarkoordinaten umschreiben:

1 1
Urr + —Ugo + —ur =0, auf {(r,0)s.d.0<r < R,0<0 <27},
T T

u(R,0) = f(0), auf{(R,0)s.d.0<0<2r}.

7.1 Separation der Variablen

Man nimmt an, dass die Losung der PDE die Form

u(r,0) = F(r)G(0)

besitzt. Man kann das in die PDE einsetzen:

. 1 .1,
F'G+ S FG+-F'G=0
T T
rPF'G+FG+rF'G=0
(r’F" +rF)G = —FG
r2F”+rF' o -G o

F TG

k

Die Randbedingungen lauten:

G(0) = G(2n)
G(0) = G(2n)

7.2 Fallunterscheidung

Man versucht die DGL mit der Funktion G(6) zu 16sen:

k =0: G = 0 Die Losung lautet: G(8) = A6 + B Mit der ersten Randbe-
dingung folgt: G(0) = B = 2rA + B = G(2x) Das heit A = 0. Mit der
zweiten Randbedingung folgt, dass G(8) konstant sein muss.

k <0: & — kG = 0 Die Lésung lautet: G(0) = CeV =% 4+ De™ V=% Mit den
Randbedingungen folgt:

C+D= Ce(\/—k)2rr + De—(\/—k)ZW

V=kC — \/=kD = \/=kCeVTR2 _ [T pe~ (V=R27

Man addiert die beiden Gleichungen und kurzt /=& aus der zweiten
Gleichung. Es folgt: ¢ = 2Ce(Y=F)?" Die einzige Lésung ist ¢ = 0 und
D = 0 (friviale L&sung).

k > 0: & + kG = 0 Die Lésung lautet: G(8) = E cos(vVk8) + H sin(+v/k6) Mit
den Randbedingungen folgt:

E = Ecos(Vk2n) + H sin(Vk27)
H = —Esin(Vk2n) + H cos(Vk27)

Man multipliziert die erste Gleichung mit H und die zweite mit £ und
vergleicht die beiden Gleichungen: H? sin(vk2r) = —E?sin(vVk27) Da
—E? = H? nie moglich ist, muss sin(vE27) = 0 gelten.

Es folgt: G, (0) = A,, cos(n) + B, sin(nb)

Fals man & = n? in die erste Gleichung einsetzt, folgt r2F"” + rF’ —
n?F = 0. Dies ist eine EulerDGL, und man findet folgende Ldsung:
Fo(r) = P,r™ + Q,r~ " Man mdchte aber, dass die Losung im Gebiet
beschrankt bleibt. Damit » — 0 beschrénkt bleibt, setzt man @,, = 0. Da
u(r, ) = F(r)G(0) sein muss, gilt: w,, (r, 0) = r" (A, cos(nb) + B, sin(nb))
Mit dem Superpositionsprinzip kann man die Lésung fur alle n schreiben
als:

oo

u(r,0) = Y " (A, cos(nd) + By sin(nd))

n=0



8 Appendix

8.1 Umwandlungen

Gegeben: n € N

sin(7m) =0 ; cos(mn) = (—1)"

(TN 1+ (=D)" n JO, n=2j+1
o8 (5”) - (f) D% = {(71)1‘, n=2j
Cn 14 (-1)" 0, n=2j
s (5") - ( ) O (-1, n=2j+1

sin(z) sin(nz) = %(COS((]. —n)z) — cos((n + 1)x))
cos(x) cos(nz) = %(cos((n + 1)z) + cos((n — 1)z))
sin ((n + 1)%) = £ cos (n—;)
cos ((n + l)g) = Fsin (n—;)

cos? (z) — sin®(z) = cos(2x)

1 1
cos? (z) = 5 + 5 cos(2z)

8.2 Identitéiten

(=)™ + (=1) ™" = ™™ 4 7" = 2cos(wn)

(=)™ = (=1)"™ = €™ — 7" = 2isin(wn)

vi=a=| 25

8.3 even - odd

even - even = odd - odd = even
even - odd = odd

L L
/ even = 2/ even
—L 0
L
/ odd =0
—L

Jede Funktion ist aufteilbar in even & odd Teil:

f(z) + f(—=) n J(z) — f(-=)
2 2

f = feven + fodd = (

8.4 Vorgel6ste Integrale

/sinz(nx)dx = / [7% cos(2nz) + %] dx

1 1 1
75/005(2nw)dw+/5dw: “an sin(2nx) +

w8

/Cosz(nx)dx = / [% cos(2nx) + %} dx

=1 (2 )d+1d*1'(2 )+
=3 [ cos(@na)de 5de = - sin(2nz

IR

/tan2(nx)dx = / [sec2(n:c) - 1] dx

sin(nz) 1
= ———— —z = —tan(nz) —
n cos(nzx) n

/xsin(nx) - 7% cos(nz) + % /Cos(nw)dw

sin(nxz) — nx cos(nx)
2

T 1
= —— cos(nz) + —; sin(nz) =
n n n

/xcos(nx) - %sin(nw) - %/sin(na:)da:

nx sin(nx) + cos(nx)

T 1
= —sin(nz) + —; cos(nz) =
n n

/ x sin? (nx)dx

n?2

x
/ 5[7 cos(2nz) + 1]dz

1 1
= 7/zdw— 7/accos(2nac)dac
2 2
2 1
A sin(2nz) — / — sin(2nx)
4 2 [ 2n 2n

cos(2nx)

8
N

x . (2na) 1
= — — —sin(2nz) - —
4n 8n2

4

/xcos2(nx)dx = / g[cos(%m) + 1]dx

1 1
= g/xd:c—f— E/xcos(an)dx

2

x 1| x . 9 1 . 9 d
Z—i-i %sm( nx) — %sm( nx)dr

N

Lt Zsin(2ne) + : (2nz)
T L% -
T T 1, Sin(2n@) + o cos(2na

/sin(kx) cos(nx) = % /[sin(w(k —n)) + sin(z(k + n))]dz

% {/sin(zkfmn)dz+/sin(zk:+nx)dm}

1 [cos(zk — zn)  cos(zk + xn)
2 k—n k+n

/sin(kx) sin(nx)dx = / [% cos(kx — nx) — % cos(kx + nx):| dx

_ 1 [sin(kz —nz) sin(kz + nx)
N k—mn k+n

|

/cos(kx) cos(nx)dx = / [% cos(kz — nx) + % cos(kx + nw)} dx

_ 1 [sin(kz — nx) i sin(kz + nz)
T2 k—n kE+n

/cos(kx) cos? (nx)dx = / %[COS(QTLQZ) + 1] cos(kz)dz

! / |:cos(km) cos(2na)dz + / cos(km)] dz

2

1 1 1 1
=5 / |:5 cos(kx — 2nz) + = cos(kx + an)} dz + 5 /cos(kac)dac
_ 1 [sin(z(k +2n)) sm(w(k —2n))
1 { k+2n T k—2n * o  sinke)

. in2 = l — cos(2nz)] sin(kz)dx
/sm(kx) sin (nx)dx7/2[1 (2nz)] (kx)d
=5 {—/sin(kx)cos(an)dz—&-/sin(kx)dx}

1 1 1
=3 / {5 sin(kx — 2nz) + 3 sin(kx + 2nz)] dx + 5 /sin(ka:)da:

1 [cos(k:c + 2nz)  cos(kxz — 2nz)

1
—= — — cos(kx)
k + 2n k—2n 2k

4

/sin(kx) cos” (nx)dx = / %[cos(2nm) + 1] sin(kz)dz

1 . .
=3 /[sm(km) cos(2nx) + sin(kx)]dz

1

1 1 1
= 5 / {5 sin(kx — 2nz) + 5 sin(kx + 2na:):| dx + 5 /sin(kw)dw

—1 [cos(z(k + 2n))  cos(z(k — 2n))
4 [ kt2n | k_2n

1
] ~ o cos(kx)

2 _[1
/cos(kx) sin” (nx)dx = / 5[1 — cos(2nz)] cos(kz)dx

1
=3 /[7 cos(kx) cos(2nx) + cos(kx)]dx

1

1 1 1
=5 / |:§ cos(kx — 2nz) + 5 cos(kx + 2’!LI):| dx + 5 /cos(k:v)dz

_ -t {sin(m(k +2n)) = sin(z(k — 2n))

1.
1 k+2n k—2n }Jrﬁsm(’”)
8.5 Allgemein Integral

L firn #m
frn =m
frn=m =0

/L . (mrz) . mﬂ'm furn #m
sm (| —— . Sln
L L flrn=m #0

L /nrx
sin <7) cos d =0 Vn,m
L L L

Nach Integral:

sin(nm)|§1r =0 ; cos(nx)|(2)7r =0

a:sin(na:)|(2]7r =0 ; a:cos(nav)|(2)"r =27 #0



8.6 Integraltafel

8.6.1 Integrale (/- -, efc...)

nygy _ (et 0"
b)'de = ———— -1
[+ byras = EEER 02 )
1 1
/ dx = —In|az + b|
axr + b a

" (az 4+ b)"+2 b(ax + b)" 1!
b)"dr = —
/w(aw+ )" da (n + 2)a? (n+ 1)a?

ar + b ax bp — a
/ dm:—+p72)(11n\pz+q|
px + q p p

/ 1 1 T
———dx = — arctan <7>
a? + x2 a a

1 1 a+x
———dr = —1In
/a2—z2 2a

a—=x
8.6.2 Integrale (sin(ax), cos(ax), tan(az))

in(2
/sm(m)zdw _ ¥ _ sin(2az)
2 4a

/m - sin(az)de = sin(az) - cos(ax)

a? a

in(2
/COS(GZD)ZdaZ _— + sin(2az)

2 4a
/m - cos(az)dz = cos(ax) n x - sin(ax)

a2 a

cos(ax)?

/sin(az) - cos(az)dz o

/sin(x) ce¥ dr = i(sin(a&) — cos(x))
/cos(m) -e¥ dx = ?(sm(m) + cos(z))
/z2 - sin(az)dz = is [ a?2? cos(azx) + 2 - cos(az) + 2ax sin(az)}
/w2 - cos(azx)dz = is [aza:2 sin(az) — 2 - sin(az) + 2az cos(az)]
/tan(ax)dx = _L In | cos(ax)|
a
/arcsin(:c)dx =z - arcsin(z) + /1 — 22
/arccos(m)dz =z - arccos(z) — /1 — z?

1
/arctan(z)dm = z - arctan(z) — 5 In (1 + :L’2)

8.6.3 Integrale (e“*undin(x)

e (-3

/7r e g, J2m farj=o0
o 0 flUrj#0

8.6.4 Integrale Fota

1 1
dr = —1 b+ C
/aw-{-bm an\aw-Q— | +

Py p)stl
/(amp—i-b)s Pl M+C, s#—1,a#0,p#£0

ap(s + 1)
/(aszrb)

b : d — be
/‘”+ do="2 2" X jex +d|+ C
cx +d c c2

/ ' de = Laret (%) +c
———dx = — arctan | —
z2 + a? a a
71 dx = ! 1
2 — a? z_ﬂn
/\/a2+932da::
a? T
/\/a2712dm: a? — 22 + — arcsin — + C
2 lal
2
/\/x27a2dr:g m27a27%1n‘z+\/9327a2’+0

_ 1
la:p_ldx:—ln|awp+b|+c, a#0,p#0
ap

T —a
xz+a

2
\/a2+x2+%ln<m+ a2+x2>+C

+C

N8 N8

dz:ln(er a2+a:2>+0

dac—ln’:c—&-\/ —a2’+C

| e
| ==

dxr = arcsm— +C
/\/aQ— |al

. 1 pa
/ekldw = Ee’” +C

kx 1 kax
dor = ——— c
/a T k~1n(a)a +

kx
/ekm sin(ax + b)dz = G;W(k sin(az 4+ b) — acos(az + b)) + C
kx
et cos(ax + b)dr = ———— (kcos(ax + b) + asin(ax + b)) + C
a2 + k2

/ln |z|de = z(In|z| — 1) + C
/loga |z|dz = x (log, || — log, €) + C

k1 1
/mklnmdm:x Ine — —— | +C, k#-1
k+1 k+1 ’

1
/a:71 Inzdx = g(lnw)2 +C

tanzdz = —In|cosz| + C

.2 1 .

sin® zdx = 5(95 —sinzcosz) + C
2 1 .

cos” xdx = §(x+smzcosz) +C

tan? zdz = tanz —z+C

dazfln‘tanf‘ +C
sin x

da = tnfiun (5 )|+ €
= an (= + =
cos T v n n 2 4

de =In|sinz| + C
tanx

1 n—1

. . m—1 . n—2

sin” zdz = —— sin” x cosx + sin”™ zdx, n>2
n n

n 1 . n—1 n—1
cos  xdxr = — sin x cos xr +
n

/cosn_2 xzdx, n>2
arcsin xdx = x arcsinx + m +C

arccos xdxr = x arccos r — m +C

arctan xdx = x arctanx — % In (1 + xz) +C

sinh xdx = coshx + C

cosh zdx = sinhxz 4+ C

tanh zdxz = Incoshz + C

arsinh xdx = x arsinh x — \/ﬁ +C

arcosh xdx = x arcoshx — \/ij +C

n(lfa:Q)JrC

artanh xdx = z artanhz + —

° sin ax

d —, a>0
x
R > 1 |/«
sin(mZ)dw:/ cos( )dm—f —=
o 2V 2
° n!
—ax_n _
e z dx = Pt a>0

\\:\a\,\\\\\\\\\\\\\\\\\\

oo 1
e’ dm_f,/f, a>0
a



8.7 Trigonometrische Identitéten

8.8 Ableitungen 8.12 Periodizitat
1 5 1 r_q 1 _ 1 e ist nicht periodisch.
costq L ttanta (loga [21) = (loga ©) = 297 eV2i* st periodisch.
1 cx\/ — 1 cx
—s :1+cot2a (a ) (clna)a . .
sin® o (tanz) = L 4tan’e 8.13 Partialbruchzerlegung - Ergdinzung
sin (90° + a) =cosa " cos2x
sin (1800 +0) = Fsina (arcsinz) = 1 PBZ bei doppelter Nullstelle
/1 — 2
cos(QOoia)::Fsina 1x 52 :>As+B+ C
’
cos (1800 + a) = —cosa (arccos )" = — /T — 22 (s2+1)(s—1) s2+1 s—1
( N 1 oder
. . . arctanz) =
sin(a + B) = sin« cos B =+ cos asin 1+ 22 s_5 A B
cos(a + B) = cosacos B F sinasin 8 (s — 2)2 = s—2 + (s — 2)2
tan(o £ B) = tanodtanf 8.9 Euler-Beziehungen Dann Koeffizientenvergleich
1 Ftanatan g
31 e 31 3 1 1T —1xT
sin(2a) = 2sinacosa sin(a) = - (e - 8.14 Komplexe Zahlen
1 _ .
cos(2a) = cos’a —sina =2cos’a—1=1— 2sin? « cos(z) = 3 (6m +e m) Normalform: z = x + iy
o Cim Polarform: z = r(cos(y) + isin(p)) = rcis(p)
e —e
tan(z) = ————
tan(2a) = _Ztana (=) i(et® +emi) r=+/z2+y?
1 —tan? o . 1/, —x z (Y Y
. . 3 sinh(z) = = (e —e ) (¢ = arccos <7> = arcsin <7) = tan (7)
sin(3a) = 3sina — 4sin” a 2 T T z
1/, i ip i -
cos(3a) = 4cos® a — 3cos a cosh(z) = 5 (eJC + eiz) Exponntialform: = = re*# e'? = cos(¢) + isin(p)
son(3a) 3tan o — tan® o et —e™” 8.14.1 Operati
an(3a) = —M—— —
1 — 3tan2 tanh(z) = m -14. perationen
sin® < = 1-cosa sinh(0) = 0, cosh(0) =1 Normalform: )
2 2 z1 + 22 (z1 4+ @2) + i (y1 + y2)
1 ; — 1
cos? & = 122 FT = (1firk=0,%2,-- -1fUrk£1,£3,.-- 2z (@@ —uige) di(mye + o)
2 2 FT R pTnT T erT
tan? a 1 —cosa z1 w1$§+y%112 +i$2'y%*®%y2
an. — = ———— iz L Z2 r5+y z5+y
2 1+ cosa e'® = cos(z) + i - sin(x) Polarform: 2 ,2 200
) 2129 rirgei(P1He2)
tang _ 1 —cosa _ _sina . S r—le—iv
2 sin o 1+ cosa 8.10 Logd"thmen Z1 z 1 gile1—92)
e ro "
z",neZ r"e'"¥?(DE MOIVRE)
In(uv) = In(u) + In(v .
sinaisinﬁ:Qsina:;ﬁcosazﬁ (u) () ) Betrége:
In (7) = In(u) — In(v) r=12|>0 |z = /22 + 52
v _ — 1zl
lzw| = |zllw] || = 15
_ 1 w [w]
cosa+cosﬁ:2cosa;rﬁcosa2ﬁ ln(7>:—ln(v) [z +w| < |z + |w]
v
In (ur) =r-In(u) Im
. 8= _2s at+fB . a—p . 3
cosa — cos 3 = —2sin sin — Iny| 'C:In‘y ‘ : seaibirdlp
1 7ln|r|:ln‘r_l‘ b4 P A
sinasin 8 = —(cos(a — B) — cos(a + B S0
g (oo ) ( ) In(1) = log(1) =0 T 5
-3 2 10 1 P 3 Re
1 ' @
cosacos B = 5((}08(0& — B) + cos(a + B)) 8.11 Geometrie 34
ad
1 Kugelvolumen vV = #xr? L
sinacos g = E(Sin(a — B) +sin(a + 8)) Kugeloberfldche A = 4rr?




9 Zweidimensionale Wellengleichung

Gegeben:

Ut = ¢ (uzz + uyy)
(z,y) € [0,a] x [0,b], t>0
w(0,z,t) = u(a,y,t) = u(z,0,t) = u(z,b,t) =0
f(@, ),

u(z,y,0) = ui(x,y,0) = gz, y)

Aligemeine Lésung

= E:Tszl [Amn cos (Amnt) sin (

) si
w) sin (””’ )}

u(z,y,t) :v) sin (nTy) +

By sin (Amnt)) sin ( v

m2 n2
Amn = e\ — + — b2
> lm
Z Apg sin (—93) sin <?y> = f(z,y)

k,l=1

Apn = 7/ / f(z,y)sin (Ew) sin (Ey> dydz
ab Jo Jo a b
el . km X I
Z Bridgisin [ —z ) sin | —y | = g(z,v)
a b
k=1
4
/ / (z,y) sin —w) sin (—y) dydz
mn b

10 Trigonometrie (Fota $.97-99)

Bmn =

13.3 Substitutionsregel

kartesisch zylindrisch sphiérisch
z
r=qxT+y +z
’ a9 x
L. P=yx"+y = =
; x“+y©
4 & et 6 = arctan :
8l 4 @ = arctan ¥
x 4 zZ=z ¥y
S y = arctan—
/ ¥V
x
=y
X = pcos@
y=psing
Z=z

x=rsinfcosy
y=rsinfsiny
z=rcos@

12 Ableitungsregeln (Fota S.63-65)

o 0 /6 /4 w/3 | w/2 | 7 T 0-Stellen
sina | 0 | 1/2 | v2/2 | V3/2 1 0 |2« k-m
cosa | 1 | V3/2 | vV2/2 | 1/2 0 | -11]2- T tk-m
tana | 0 | v/3/3 1 V3 — 0 ™ k-m
cota | — V3 1 \/5/3 0 — T Stk
cos(z) = % (em + e_im) cosh(z) = % (e“c + e_x)
sin(z) = & (e”" — 67”’) sinh(z) = 1 (ew — e’”)
e2® = cos(2x) + isin(2x) e~ 2® = cos(2x) — isin(2x)
__ _2cos(x)
sec(m) T cos(2x)+1

11 Koordinatentransformation

Zylinderkoordinaten

dr =cosp-dp—psingp-dp dy=singp-dp+ pcosp-dp dA =p-dp-dp
Sphdrische Koordinaten

dA =12 .sin@ -di-do dV =r%.sinf-dy - db - dr

0<60<7m 0<yp <27

Ellipsenkoordinaten

z = a-rcos(p)
dA = abrdrdy

y=b-rsing z=0

12.1 Produktregel
(f(z)-g(@)" — f'(z) - g(z) + f(z) - ¢’ ()

12.2 Quotientenregel
(53) -

12.3 Verallgemeinerte Kettenregel

1 (@)-g(z)=f(2)-g' (x)
g(x)?

FI(t) = fo(x(t), y(8) - 2(t) + fy (x(8), y(1) - 9 (¢)

13 Integralregeln (Fota S.70-72)

13.1 Integral mit Fkt. als Grenze

[29 fu) - du = f(g(@)) - g/ (=)

13.2 Partielle Integration

I

cvde =u-v— [u-vde

Ju-vde=vu-v— [u - vdx

f flu(z)) - v (z) - do = f;‘((:)) f(z)-dz ,wobeiz = u(x)
14 Vektoranalysis (Fota S.102-105)

14.1 Skalarprodukt

b= bs

al b1
az . b2
as b3

14.2 Vektorprodukt

ai
axb= as =
as 3

14.3 Differentialoperatoren

az - bz —agz - b2
ag-blfal-b3
CL1'b2-d2'b1

grad(f) = (8 (@.v.2), 8@y, 2), B (@, 2))

div(®) = (G (0, 9,2) + H2(2,9,2) +
rot(a):(m,m ovy _ dvg m,m)

15 Partialbruchzerlegung

)‘al'b1+a2'bz+a3'

)

5 (2, 2))

1. einfache Nulistelle: 2

2. doppelte Nulistelle:

__A L __ B _
(z—=xq) + (z—x0)2

3. komplexe Nullstelle: %

Beispiel : —#—— = —2 + ln + 525
_ Aet1) (e=1D)+B-(e4 D)2 (@=1)+C-(a+1)3
- (x+1)2-(z+1) - (x—1)
—A—-B+C=0
—B+3C=1 1
A+B+3C=0 2’
B+C=0

Tipp: (14 2°) = (14 2) (1 — =+ 2?)

16 Asymptoten (Fota S.66)

1 lim, 0o 515

2. Ax) =mz+b — m=limz,o (@) —

= § oder £ = Bernoulli-L'Hopital

b= hmwaoo(f(x) -

mx)
3. Allgemein: lim, o0 (f(z) — A(z)) =0
a) Héchste Nennerordnung klrzen, lim, —, o bilden = a; = ... —

konstante Terme fallen weg!



b) Gefundenen Term von Ursprungsfkt. abziehen — Zahler wird
um eine Ordnung Kkleiner

C) lim,_, « bilden, Nennerordnung kirzen = as =..

d) A(x)=a—1+4+az+...

17 Bernoulli-L’Hopital (Fota S.61)

Falls lim, o £53 = 8 oder lim, o0 L5 = =

— beide Fkt. mussen gegen 0 oder co gehen!

m M = lim (@)

2% g(z)  eroe g'(x)

18 Folgen (Fota S.38-41 + S.51-54)

Satz: Ist eine Folge monoton wachsend und beschrdnkt, so ist sie konver-
gent.
Konvergente Folge: besitzt einen Grenzwert.
Eine Folge ohne Grenzwert ist divergent.
Konkav: f(tz + (1 —t)y) < tf(z) + (1 —t)f(y)
Konvex: f(tx + (1 — t)y) > tf (=) + (1 — ) f(y)
t € [0, 1], strikt wenn < durch < ersetzt wird.
18.1 Grenzwerte (Fota S.61-62)
1. Wurzel: erweitern nach 3. Binom. Formel
2. Betrége: links- und rechts. Grenzw. separieren

3. e® >> 2% >> vz >> In(x)

H BLA1
lims—oe BLAT

1. Hochste Potenz kUrzen = niedrigere Potenz gegen 0

2. Gehen Zd&hler und Nenner gegen oo oder 0 = Regel von Bernoulli-
L'Hopital (evtl. mehrfach)

—  Nenner-Nst,

3. Partialbruchzerlegung  lim, s o gj:jg; - plel

ausklammem lima 2, = 5iaT + Fias

4, i durch y substituieren — limg_, o = lim,_,o = Bernoulli-L'Hopital
anwendbar

5. Sandwichsatz: Folgen ay,, by, ¢, Mita, < b, < cp

o limg o0 an =limg o0 =1 = limg 00 by =1

18.2 Wichtige Grenzwerte

limg o S22 — 1
. arctan(z) _

limg o —F— =1
limg o arcs;u(r) -1
H — €T j—
lime o0 = 5itesy =
sin(az)
Sin (@)

Q o=

limg o =
=1

)

— 1l

1
n
n

limg o0 m - sin (

I a®—1 __

Mg —0 — =
In(a+x

o ( - )

._.
—~
S]

limg = %
limg oo Ya=1

limg oo ¥z =1

H €T f—
limg 00 2aT = 0

limy o M -0

limg, 0 1_5025(36) %

limg 0 tan(x) -1

lim ™ tan(z) _ Foo
zot 5 T -

limg 00 (1 + %)I =

e
limg oo (1+ 2)" =e”

limg_,0z% - In nb(m =0
. In(z)

limg 00 ﬂk =

. x

limg 00 5 = +oo

limg oo (7{+1

19 Ableitungen (Fota S.63-65)

19.1 Ableitung der Umkehrfunktion (Inverse)

1

g=f"@) =g @) = 5 ——

f'(g(=))

19.2 Ableitung von Kurve in Parameterdarstellung

Yy =~

’ Yy
- b
x

/,:.’ftgj—iy

3

19.3 Ableitung in Polarkoordinaten

— AUS z(t) und y(t) wird r(¢)

z(¢) = r(¢) - cos(¢)

i y(e) =r(¢) - sin(¢)

r_ 4 _ 7(¢)sin(¢) + r(¢) cos(¢)

T @ () cos(d) — r(e) sin(e)

20 Partielle Ableitungen

20.1 Richtunsableitung

— Anderungsgrad der Fkt. in geg. Richtung #

|

Dy = — - grad(f(z,y, 2))

=

Definition: D.,, £(0,0) = lim,_,o LR —£(0.0)

20.2 Satz von Schwarz

Wenn f,, und f,, stetig, dann gilt f., = fya

20.3 Satz vom Maximum

Bereich A abgeschlossen und beschrénkt, f stetig auf A
= 3 mind. eine Max/Minstelle (zo, y0) € A

20.4 Hesse-Matrix

9%f )
D20y oy 2

negativ def = lok. Max, nicht def = Sattelv/kt.

-

o2 o%f
< o5y WY > positiv def = lok. Min

20.5 Laplace Operator

Af = fex + fyy + fzz
Af = fpp + %fp + p%f«pnp + fzz
Af = frr+ 2fr+ 5 foo + ;5 cot(O)fo + rmgy fee

21 Integrale (Fota S.70-74)

21.1 Hauptsatz der Integralrechnung

£ [T F(dt = f()

21.2 Leibnizsche Regel

Bedingung: f(z,t) stetig im Intervall
£ [0 f@tydt = f (w, (v(@) - (@) = flz,u@) o @)+ [0 fala, t)dt
4 9@ p)dt = f(g(x)) - ¢’ (x) — Nur im Spezialfall

dzx Ja

21.3 Uneigentliche Integrale

¢ Uneigentliches Integral 1. Ordnung: — Integral bis co

/00 f(x)dx = Em /c f(x)dz

¢ Uneigentliches Integral 2. Ordnung: — Polstellen oder Definition-
slicken

! bl
fy e
21.4 Ansdtze fiir Integrale
1. Substitution
. Partielle Integration

2
3. Partialbruchzerlegung
4

. Probieren mit Hilfe von Ableitung

5. [ L& dz = n(f(2)) +C

6. Wurzelintegrale:
a) Quadratisch Ergdnzen, s.d. k (1 — w?) oder k (u? £ 1)
b) Sub: vuZ + 1 = u = sinh(t); Vu?2 — 1 = u = cosh(t) V1 — u? =

u = sin(t)



21.5 Substitutionen

Integral Subst. Bemerkungen
f(az +b) t=ax+0b

flg(@))g' () g(z) =t = [ f(t)dt
f@VarEh)  w=t=t >0

a

f (m Va? — mz) T = asin(t) Va2 — 22 = acos(t)

f( ,Va? + a?) z = asinh(t) a? + z2 = acosh(t)

f(z, V22 —a?) x=acosh(t) +x2—a?=asinh(t)

Fin(@),cos(@) ¢ =tan(3)  sn(o) = 12

1+t2

_ 1-t?

cos(z) = T2
do — 24t

1+¢2

f(e®,sinh,cosh) t=¢"

sinh(z) = Co1

cosh(z) = 241

21.6 Integraltabelle

S|

vl

jus a
T ﬂ 2 T ~
fo P VI LT e 2 T
sin V21| 2 |o 0 0 0
2 T2 3 = =2 =
sin = T z T o z P
- _—
sin® BEv3 | 2 2 1o 0 0 0
T 37—8 37 37 3 Tr— 37 37
Sm2 33 16 8 | 4 16 | & 4
cos > 1 0 0 V2 2 0
") 3f= = = >F7 3
COS3 758, % 5 s 731 2 s
cos 575 % 0 0 35 3 0
cos? 813w 37 37 37 +37 37 37
. 32 16 1 16 4
sin“ cos i % 0 0 0 0 0
2 1 T 1 2
sin” - cos s 3 0 0 W 5 0
: 2 | 4—2 1 2
sin - cos o 3 5 0 0 0 0

21.7 Wichtige Integrale Fota (5.72 - 74 + S. 65)

f'(=)
f(@)

/ J@) - f@ae = o (@) +C

(ax+b)"+1
/(aw-i—b) dx ( T 1a +C

de =In|f(z)|+C

+C

(n+ 2)a?

(n + 1)a?
b

1
/ @10 T T as 02 T (n=DaZ(az 1 0)7 T

(az + b)"+3

2b(ax +b)"T2 b2 (ax + b)" Tt

2 n
b)"dx =
/z (az + b)"dx T3
x 1 2
7dw:51n|x +a|+C

2 4+ a

T 1 2

/a$2+bdx=gln{ax +b}+C

/71 dm:ilnw_a
z2 — a2 2a

x4+ a

+C

(n + 2)a® (n+1)a®

+C

+C

1 1
/mdm = ga.rctdn (a) +C

1
/ (x2 + az)" dr = _Q(n —1) (az +1.2)n—1

+C

1
/ (a2 — z2)™ dz = 2(n —1) (a2 — r2)"*1 +C

-y Y
dr = (&
/m2+y2 x m2+y2+

/ ﬁdm = arcsin(z) + C

/ \/%dw = arccos(z) + C

/ I —12:2 dx = artanh(z) = log < 1ti> +C,lz] <1

/ w%“dac = arsinh(xz) = log (:c + m) +C
/ﬁdz = arcosh(z) = log (:er \/ﬁ) +C, 1<z

/ﬁm = —cot(z) + C

/sm (z)de = 12 (cos(3z) — 9 cos(x)) + C
/sin4(z)dz = 3%(1% — 8sin(2z) + sin(4x)) + C
/COSS(w)dI - %(Qsin(m) +sin(32)) + C
/cos4(a:)da: = %(ux + 8sin(2x) + sin(4z)) + C
/sin% (2z)dz = —% cos(2z) + C

/cos% (22)dz = sin(x) cos(z) + C

/sin(z) cos(z)dz = 7% cos’z +C

/sinQ(w) cos(z)dz = %sing(w) e

sin(z) cos® (z)dx = —% cos®(z) + C

1
sin®(z) cos® (z)dz = 5(41 —sin(4z)) + C

sin® 1 (ax)

sin” (ax) - cos(az)dzx = m +C
n+1
sin(az) - cos” (ax)dx 7% +C

sec?(x)

— e Y — —

tans(z)dz = + In(cos(z)) + C

/tan4(:r)dx =z + %tan(z) (sec2(az) — 4) +C

/cot(a:)da: = log(sin(z)) + C

/coth(w)dw = log(sinh(z)) + C

/ cos(ax) o 1 e
sin®(az)  (n—1)a-sin"~!(az)

/ 1 dz:xfln(a+em)+c
a

et + a
1 —a) —
/ n(e” —a)—=z e
a
/ =In(z) —In(z+ 1)+ C
x?
2ax+b
/ de — 2an(\/4ac—b2) e
2a0% tbo+ ¢ Aac— b2
/z e” (amil)-eaz+c
a2
/ (a z? — 2ax + 2) az
z —— ] e
a3
T 1 ax
/ —de==——-In|p+q-e"*|+C
p+ q € p ap
— -In e
p + q- eaz ap P
ax
/e - sin(bz)dz = 27{;2[& -sin(bx) 4+ b - cos(bzx)] + C
/ ¥ . cos(bzr)dr = ;J!bQ la - cos(bzx) 4+ b - sin(bz)] + C

1 2
/me 7-6'7: +C

/ (n(@)" . _ (n(z)"*!
x+1

1
// 2dx_7r
oo Ltz

21.8 Satz von Stokes

+C

A = [[rot(¥) - 7dO — (it normiert!l) (2B. : dO = dx - dy)

22 Differentialoperatoren

)

grad(f) = Vf(2.v.2) = (3 (@.v.2). § (0.9.2). §(@,0,2))

div(®) = (G (@,v,2) + F2(2,9,2) + 52 (@.v,2))

O v1 6y~U3782-v2
rot(v) = Oy X Vg = 0z - v1 — Oy - v3
82 V3 81'1)278?!-’01




22.1 Zusammensetzungen von Differentialoperatoren

div(grad(f)) = fee + fyy + f22 = Af — Laplace-Operator
rot(grad(f)) = (0,0,0)

div(rot(v)) =0

div(f - rot(7) = grad(f) - rot(7)

rot (rot(v) = grad(div(?)) — (Avi, Ava, Avg)

div = 0 = Quellfrei, rot = 0 = Wirbelfrei.

div = rot = 0 = Harmonisch

23 Differentialgleichungen (Fota S.81-82)

23.1 lineare homogene DGL 1.0rdnung

Form: F (z,y,v",v",...,y")
simpel: y'(z) = f(z) = y(z) = [[ f(z)dz] + C
separiebar: y'(z) = £ — [ h(y)dy = [ f(z)dz] + C

/

y' = p(x) - y (immer separierbar):

1. Substitution y' = 42

2. Separieren — < - dy = p() - dx

3. Integrieren — [ Ldy = [[ p(x)dz] + C

Substitutionen: — Achtung Rucksubstitution!

* y'(z) = flaz + by(z) + ¢)
=u'(z) =a+b- f(u)

V@)= ()
—sy=u(z)
=y () = u(@) + 2 (2)

Sub : u(z) = ¥

* y'(2) = (y(@) + f(2)*:  Sub:u(z) = y(z) + f(2)
— y(x) = u(z) — f(x)
=y () =v/(2) — f'(2)

Tipp: DGL-Form: v’ -y + u -y’ = (uy)’ — Integral

23.2 lineare inhomogene DGL 1.0rdnung
y' =p(a) -y +q(z)

1. L&sen der homogenen DGL wie oben
’
=yrh=y +ay=0

1. Finde partikuldre Loésung mit:

e Ansatz von Tabelle — 3.1

e Ansatz von Lagrange — 4.1
3.1 Ansatz ableiten — o’
3.2 y und y’ in Anfangsgleichung einsetzen
3.3 Konstanten bestimmen — 5.

5. y = yn + yp» — Randbedingungen

Sub : u(x) = az + by(z) + ¢

Stérfunktion Ansatz fir y,

Konstante Yyp = A

lin. Fkt. yp =Ax+B

quadr. Fkt, yp = Ax? + Bx + C

Polynom n-Grades ¥p = A+ Bx+ Cx? + ...+ Zx"

Asin(wz) ¥p = Csin(wx) + D cos(wx)

B cos(wz)

C'sin(wz) + D cos(wx)

A eb® yp = C-eP*oderfallsb = —a:
yp = Cx - eb*

Ansatz von Lagrange
4.1 Homogene Lésung finden: y(z) = C-...

4.2 Konstante C als verénderliche Fkt.: C = C(z) = y(z) = C(z) - ...

4.3 Ableiten: y'(z) = C’(z) ... — Produkiregel!
4.4 Einsetzen in die inhomogene DGL

4.5 Lédsen nach C(x) — meist partielle Integration

4.6 Lésung fur C(z) in Lésung von y;, einsetzen — 5

23.3 Exakte DGL

Beschreiben Niveaulinien einer Funktion
P(z,y) + ¥(z,y) -y =0
Bedingung:

o &, (z,y) = ¥, (z,y)V(z,y) € Def Bereich
e Def. Bereich muss einfach zusammenh. sein. Losen:

J@(z,y)dz + ay) = [ U(z,y)dy + B(z) = u(z,y)
— a(y) und B(x) durch Koeff.vergl. finden
u(z,y) + C = 0 — nach y lésen = y;,

23.4 Bernoulli DGL

y' (@) + g(x) - y(x) = h(z) - y"
1. Substitution: w = y* ="
2 =u =0-n)y "

3. Ansatzin DGL einsetzen, nach ' auflésen

4. y, 16sen — Rucksubstitution

23.5 Homogene DGL 2.0rdnung

y”+a<y'+b-y:0
1. Setze y = **
2. =X +ax+b=0 — char Polynom

3. Lése das char. Polynom:
A) Ay # X =>y= Cle>‘11’ + CQ€A2E ()\17 Ao € R)
BDA1 =X =c=y=C1e°” 4+ C2ze’"(c € R)
C) A\1,2 = d + iw — komplex konjugiert
= y = e® (C) sin(wz) + Cy cos(wz))
=y=e (Clei“”” + C2e”"“””)

4. Falls kein Stérterm vorhanden ist — Randbedingungen

23.6 Inhomogene DGL 2.0rdnung

y”Jra

Yy +b-y=g(z)

1. Lésen der homogenen DGL wie oben

2. Fi

5y

nde partikuldre Loésung mit
A) Ansatz von Tabelle — 3.1
B) Ansatz von Lagrange — 4.1
3.1 Ansatz ableiten — ¢/, 3"’
3.2 y,vy’ und ¥ in Anfangsgleichung einsetzen

3.3 Konstanten bestimmen — 5.

= yn + yp — Randbedingungen

Storfunktion Ansatz far y,

Polynom n-Grades

b#0 ¥p = Qn(x)
a#0;b=0 yp=xQn(x)
a=0;b=0 yp=x’Qn(x)

c ist keine Lsg. yp = Ae*
" c ist einfache Lsg. yp = Axe®®
cist doppelte Lsg.  yp = Ax?e®™

iw ist keine Lsg. des char. Poly.:

gsin((wz)) yp = Csin(wx) + Dcos(wx)
o coslww iw ist eine Lsg. des char. Poly.:
lin-Komb.

. ¥p = x(Csin(wx) 4+ Dcos(wx))

z Yp=A Inlx|

SUMMe von STAHKT.

Yp =¥Yp1 +Yp2t+ ...

- Yp = ¥Ypl "¥Yp2 -
Produkt von Storfk. — | Funktioniert nicht immer !
Ansatz von Lagrange fiir DGL 2.0rdnung

4.1 Homogene Lésung finden: y(z) = C.

4.2 Kon
C1

stante Cy, Cy als veré&nderliche Fkt.:
= Cl(x),Cg = CQ(%)

4.3 DGL = y(z) = Ci(z)u(z) + Ca(z)v(x)
4.4 Wir treffen folgende Annahme:

c
c

u+ Cév =0
u' + Cyv' = g(x)

4.5y" = C1u’ + Cov’

"
Y

= C{u' + Ciu” + Cév' + Cyv”’

4.6 Loése far ¢ und CF ¢

Ci =

Cs
47 ¢

g(z)-v
u’v—uv’

— _ 9@ u
- uwv—uv’

und C» durch Integration finden (Integrationskonstante we-

glassen) — 5



23.7 DGL n-ter Ordnung
Y™ tan_1y" T+ ary + aoy = gla)
1. Kommen nur Ableitungen von y vor?
1.1 Substituiere y’ mit w = Grad derDGL=n — 1
2. Setze y =
3. Finde charakteristisches Polynom fur y,, :

A" 4 an A" 4 4 aiA+ag=0
A) Alle Lsg. sind reellund A1 # Xa + ...

= Y1 = Cl‘?)\lm;yQ = Cae2”

:>y(z):y1+y2+...:Cleklm+025>‘2”+...

B) A = aist eine -fache Lsg. des char. Poly.: Ay = X2 = ...

=y =e*ys = e ..y =’ e
= y(z) = (Cl + Coz + Cs2? + ... + C,,.wr_l) e*®
C) A\1,2 = a + iw eine einfach konj. komplexe Lsg.:
= y1 = e*? sin(wx); y2 = e cos(wx)
= y(z) = e*® (C1 sin(wz) + C2 cos(wz))
D) r-fache konj. komplexe Lsg.:
= Ersetze Konstanten €, und C, durch C; (z) und
Ca(z) vom Grad r

= y(x) = e” (C1(z) sin(wz) + C2(x) cos(wx))
4. Finde partikulare Losung mit Tabelle ( # Lagrange)
4.1 Ansatz ableiten — o/, ", ..., y™

424", y", ...

4.3 Konstanten bestimmen

,y(™ in Anfangsgleichung einsetzen

5. y = yn + yp — Randbedingungen

Tipp: Char. Poly:: A> + A* + A2 + A2+ A +1=0
— mit (A — 1) multiplizieren
= ergibt zus&tz. Nullst. fur A = 1 — De Moivre (Fota S.18)

Stoérfunktion Ansatz fur y,
Polynom n-Grades | yp, = A+ Bx + Cx> + ...
m - e cist keine Lsg. yp = Ae®
cist einfache Lsg. yp, = Axe®™
cistr-fache LsQ. yp = Ax"e®™
Asin(wz) iw ist keine Lsg. des char. Poly.:
B cos(wx) ¥p = Csin(wx)+ Dcos (wx)
lin-Komb. iw ist eine Lsg. des char. Poly.:
yp = x(Csin(wx)+ DCOSs (wx))
Summe von Storfkt. | yp = yp1 +yp2+ ...
Produkt von Storfkt. | yp = yp1 -yp2 - ---
—! Funktioniert nicht immer !

23.8 Eulersche DGL n-ter Ordnung

any™ 4 Lyt Sy 4 20y =0

1. Setze y = =™

2. Finde das Indexpolynom:
wtaz(a—2)(a — 1)a+ azala— 1) +ara+ag =0

3. Finde Nullstellen des Indexpolynoms
3.1 st « eine k-fache reelle Nullstelle:

o

1 — %, w0 — In(z) - 2%,. ..,z — (In(z))* ' 2z

32Ist a« = a + ib,& = a — ib, b # 0 ein Paar konj. kompl. k-facher
Nullstellen:

z1 — % cos(b - Inx)

zo2 — % sin(b - Inz)

z3 = (Inz)z¥cos(b-Inz) ; x4 — (Inz)z®sin(b-Inzx)

zp_1 — (Inz)*"1z¥cos(b-Inz); 2, — (Inz)* 12 sin(b - Inz)
A4oyp(z)=A-z1+B 22+ ...+Z x4y
23.9 DGL Systeme

fi, f2,. -
DGL System: [

, f» VON z unabhdngig = autonom
(t) = f1(@,y) ]
y(t) = f2(z,y)

it oo = 4 — fa(zy)
Phasenportrait: ' = 4 = EXCRN)

[ (t) = a112(t) + a12y(t) + b1
y(t) = a21:r(t) —+ azgy(t) —+ b2

J=a=(
)

e Stérterm b = 0 — System homogen

ai2
a2

aii
a1

;»?:A-z+5,5:(

e Ordnung: Summe der Ordnungen des Systemes
¢ DGL abhdngig voneinander — gekoppelt, sonst entkoppel
L&sen Uber char. Polynom — gut fur hom. DGI:
1. Bestimme Eigenwerte (A — AT) =0
A) A1 # a(reel) = x(t) = Crertt 4 Coe2?

B) A1 = Ao = A(reel) = x(t) = (C1 + Cat) e
C) A1,2 = a £ ib = z(t) = ™ (C1 sin(bt) + C2 cos(bt))

2. Wenn b # 0 = finde allg. Lésung von x(t)
3. f2in f1 einsetzen = y(¢) ...

L&sen Uber Entkoppelung des Systems: — gut fUr inhom. DGL
1. Bestimme Eigenwerte: (A — AI) =0

2. Bestimme Eigenvektoren — ist A halbeinfach? (gV = aV)
A) A ist halbeinfach (= diagonalisierbar) — 3.1
B) A ist nicht halbeinfach — 4.1

3. T"'AT =D
3.1 Hat A doppelte Eigenwerte? Ja = 4.1
322=Tz—y' =Tz =2 =T 'ATz - 2/ = Dz
33L6se 2z =Dz — z=...
34y =Tz

4. A nicht diagonalisierbar und/oder EW doppelt

z(t)=a-xz+b-y _ é—az .
y@t)=c-z+d-y Y= TS

42Einsetzen: gy =c-z+d(E522)
— szax _ c‘l__,’_d(;infbam)
43 = 1z afdy g admcby g
4.4 DGL auflésen und allg. Lésung in System einsetzen
und aufldsen

E—ad

b

4.1

23.10 Gleichgewichtspunkte
()
()

(o0
)- (0
Durchlaufsinn:
Richtung. welche sich mit steigendem ¢ die Kurve bewegt:

Dort wo > — keine Anderung in = und y

i > 0 — immer ~ (positive Steigung)
¥ < 0 — immer .~ (negative Steigung)
Nicht lineare Systeme muUssen linearisiert werden!

Far Durchlaufsinn:
Falls # < 0 und y > 0 — Intuition oder einfach probieren

24 Potenzreihen (Fota S.79)

3220 o an (z — z0)™ — Entwicklungsv/kt.xo: Koeff. ar,
Konvergenzradius: r = lim,, oo a:L =>0lpan (@ —x0)"
Vo mit |z — zo| < r — konv.,, Ve mit |z — zo| > r — div.
Finde Taylorreihe
’ n

F@) = f (@) + L4 (@ — wo)' + ... + L5500 (@ — 20)™

Integral? = 1.Ableitung: 4 [ f(t)dt = f(x)
Finde erste k Koeffizienten der Potenzreihenentw.

A) Terme hoher als 2 streichen

B) Integral: = Terme hdher #*~1 streichen

C) Quadrat? Ausrechnen, zu hohe Terme streichen
Finde komplette Potenzreihenentw. um zo = o

A) Taylorentwicklung: Ableiten, einsetzen...

B) Funktion in bekannte Reihe umformen

C) Ableitung/Integral als Reihe darstellbar?

D) Partialbruchzerlegung

E) Funktion als Summe/Produkt bekannter Reihen

Funkfion=3"°°  a,z" — Koef.-Vergleich
F) Funktion ungerade? — ag,az2,a4,.... =0
G) Bruch? = Nenner auf linke Seite, Koeff.-Vergl.



Bsp: In(z) = 3°2° jaw(z — 1)* beizg =1
1. Ersetze x durch z,, schreibe Summe aus
In (x0) = ag + a1 (zo — 1)* + as (zo — 1)% +
2. Setze z, ein, finde ao
0=ap-140+....40=ao=0
3. Leite beide Seiten ab
%) =a1-14az-2(xo—1)+az-3(xo—1)2+...
4. Setze zq ein . finde aq
I=a1+0+...=a =1

5. Leite weiter ab, finde mehrere a,,

e

Wl

ao =0;a1 = ;a2 = —3;a3 =
6. Finde Bildungsschema der a.,

k—1
ap = %;kzl

— Achtung: Teillbsung nicht vergessen: ag = 0

24.1 Potenzreihenentwicklung

Alle Reihenum —1 < = < 1 oder —|a | <z < |al

Geome’rnsche Rehe: - =3 ja"=1+a+2"+a2°+...

ch:o( H"z ”*1—z+m — a3
12: oot =142+t + a4

-2
1+T Z;"O( n" 22" =1 -2 +2* — 2%+ ...
=T, (B =t (1t +.)

Integrale/Ableitungen der geom. Relhe
= Zzozo(n + 1z™ =1+ 2z + 322 + 42% + 52% + .

T =T () et et = G+ 2y 2 A
In(l—2) = -2, ZIf:f(zw 24 ‘.)

n .3
(L +2) = [ pydt =30, Girentl =a - 2 4 20

1
(1-2)2

Lo =32 32" (1 +n)(2+n) =1+3z+ 62>+ 102 +...

-=)3

(1+.z3 =32 i2"(-1)"(1+n)(2+n) =1 -3z + 62°F
Binomische Reihe:

a7 = Tno (D M+ Da® =1 - 22 + 307 —4a® £

1
Vitz= :O(;)w":l-{-%w—%wQ—i—f—GxS—ﬁw‘li

/ — 1 1 2 1-3 3 1-3-5 4
l—r=1-52—53% — 5367 ~— 351687 — -
Weitere Reihen (z € R) :

D i - LA Gy O S L .0 L
sin(a) = 352 o (— )" oy = @ — & + & F L
cos(z) =32 ((—1 "éi’;, =1- ””; +%$...
sin?(z) = z;,z — 2:,’174+ 6'1 F

1 3 5
cosz(azc)=1—2 T +i, 4—2—,xﬁi

. o ni1 6!

sinh(z) = E” o 7{2n£rl)' ntl = g4 3,1173 + é‘LS + ...
cosh(z)zzn O(Qil),z _1+2,z +4%$ +éz6+...
In(z) =% GO (G o= (@ —1) =A@ —1)2 % ...

n=1
Vereinfachungen
1 1 _ 1 1 _ 1 z—1 z—1)\2
m+2*3+(m—1)*§1+(7—1)*5(17(3)1(3) + )
1 —d =1 _ d _1
(z—3)2 ~ dzz—3 — dz 3-gx
In(z) =In(z+1—-1) =In(1 + (z — 1))

e =e-e? !
s

(2n 3)-(2n—1)

2 2 _ 123
foz cos(z)™"dr = “F5 (2n—2)-2n
(217 3)-(2n—1)

fzsm(x)%dmf 1223;1 ~(2n—-2)2n
( 175):11—17)((14 3b+ab2+ab3+b4)

a® + a* + a® + a? +a+1_(a+1)(a4+a2+1):(a+1)(a2
a+1)(a —a+1)

m\:! INE]

25 Komplexe Zahlen (Fota S.18-19)

Potenzieren (Nur in Trig./Exp.-Form sinnvoll)

z" =r-cis(p)” =r" - cis(n - @)

Wurzel ziehen .

VE= Ui TR =y cis (22T
k={0,1,...,n — 1} — bilden ein regelmdssiges n-Eck
Natirlicher Logarithmus

In(z) ist unendlich vieldeutig

Hauptwert: In(z) = In(r) + ip

Allgemein: In(z) = In(r) + i(p + 2km)k € Z

26 Graphen Transformation

@ " @ "
o P / \‘.\ XF

1}:(1.) — 33‘3 _ 7 _
e —
(Spiegelung an x-Achse) . e -
3.f(z)=1 +z3 ” S/ £
(Verschiebung x-Achse) P './/‘"’
4f(ﬂf) _ (1 + x)3 , . 20 ) T s t
(Verschiebung y-Achse) ) / o
5.f(z) = 22 '
(Dehnung y-Achse) (s ’,’ & o ’.'r
6.f(z) = 0.5(z") ,./ i

(Stauchung y-Achse)

T.f(@) = (22)° 7

(Stanchung x-Achse) (7 o Y. (E) I

8.f(x) = (0.5z)* - S

(Dehnung x-Achse) e . - . e

27 Drehmatrizen (Fota S.112)

Drehrichtung nach rechte-Hand Regel

1 0 0
0 cos(p) —sin(yp) — Drehung um x-Achse
0 sin(p) cos(p)

cos(p) 0 sin(p)
0 1 0 — Drehung um y-Achse

—sin(e) 0 cos(yp)

cos(p) —sin(p) 0

sin(p)  cos(p) O — Drehung um z-Achse
0 0 1

cos() -sin(p) —sin(p) cos(w) - sin(p)
sin() -sin(p)  cos(¢)  sin(yp) - sin(p)
— sin(p) 0 cos(p)

— beliebige Achse durch (0, 0, 0)

— beliebige Achse durch (0,0, 0)

28 Fehlerrechnung (Fota S.64)

Voraussetzung: h ist sehr klein

f(zo+h)~ f (x0) h+ f(x0) + Rest

- Weil: £’ (z0) = 1%%)—1”%)

29 Linearisieren

Tangente an f(x) im Punkt (zo, yo) (in. Ersatzfkt.):
y(@) = t(z) = f (z0) (= — z0) + yo
Tangentialebene im Punkt (zo, yo) :

t(za y) =f (fﬁo,yo) + fa ((Io,yo) (m — xo)) +
fy ((o,90) (¥ — y0)) = 2z

x z (to) z (to)
y = y (to) + r - grad y (to) , 7 €R
z z (to) z (to)
x xo
g - ( Y ) =g - ( Yo )
z f(xo,y0)

e = (fu (%0,y0) s fy (T, y0) , —1)T
Fehlerfunktion: ¢(z) = f(z) — [f' (z0) - (z — za) + £ (z0)]

29.1 Approximationen fiir kleine Werte von (z) << 1

\/1+x:(1+x)%%1+

=(1+z)" 2 Nl—ix

lix =(1+z)'r1-2

\/1+z



30 Additionstheoreme (Fota S.99)

Allgemeines
cos(—x) = cos(x); cos (.7: + %) = Fsin(x)
cos(a) = sin (% + a) ; tan(a) £ tan(b) = %‘i:gb)

cos(a) — sin(a) = V2 - sin (Z - a) = /2 cos (% + a)
Cot

cot(a) cot(b
1+ cot?(z) = fmys  cot(a+b) = coté(a)):tiz(ot)(j)l
cot2(a) 1
cot(2a) = S “ot(a)
s
sin (§) = £4/% - (1 — cos(a)); cos (&) = £4/% - (1 + cos(a))
Potenzen
sin?(a) = 1. (1 - cos(2a))
sin®(a) = L - (3sin(a) — sin(3a))
sin?(a) = 3 - (cos(4a) — 4 cos(2a) + 3)
cos ( ) =131 (1+ cos(2a))
cos ( ) = % - (3cos(a) — cos(3a))
cost(a) = £ - (cos(4a) — 4 cos(2a) + 3)

30.1 Hyperbolische Funktionen (Fota S$.60)

Aligemeines
coth(z) = L2

tanh(a)+tanh(b
tanh(a + b) = coth(la:tb) = lja:ltlargﬁza) ?:nh((lz)
2a und 3a

Alles gleich wie fUr sin und cos (Fota S.99),
— sin =sinh, cos = cosh, tan = tanh
a

2

sinh(%):\/@7 x > 0; cosh(%):\/@
sinh () = —/=hO=1 5 <o

Summen
sinh(a) + sinh(b) = 2sinh a;'b) cosh (

(
(

sinh(a) — sinh(b) = 2 cosh

a';b ) sinh (

cosh(a) + cosh(b) = 2 cosh (”'H’) cosh ( z, )
cosh(a) — cosh(b) = 2sinh ( ) sinh ( = )

“\LN
-

2

tanh(a) & tanh(b) = SRHeED

Produkte

sinh(a) sinh(b) = % - [cosh(a + b) — cosh(a — b)]
cosh(a) cosh(b) = % - [cosh(a + b) + cosh(a — b)]
sinh(a) cosh(b) = 3 - [sinh(a + b) + sinh(a — b)]
tanh(a) tanh(b) = ‘amb(a)ttanh(b)

coth(a)+coth(b)

sin(az) sin(bz) = 1[cos((a — b)z) — cos((a + b)x)]

cos(ax) cos(bx) = 1[cos((a — b)x) + cos((a + b)z)]
sin(az) cos(bx) = 1 [sin((a + b)z) + sin((a — b)x)]

Potenzen

sinh?(a) = 1 - (cosh(2a) — 1)

sinh®(a) = 1 - (sinh(3a) — 3sinh(a))
sinh*(a) = & - (cosh(4a) — 4 cosh(2a) + 3)
cosh?(a) = & - (cosh(2a) + 1)

cosh®(a) = 1 - (cosh(3a) + 3 cosh(a))
cosh?(a) = 1 - (cosh(4a) + 4 cosh(2a) + 3)

Formel von Moivre
(cosh(a) £ sinh(a))™ = cosh(na) *+ sinh(na), n >2

31 Inverse der Trigonometrischen Funktionen

cos(arcsin(z)) = V1 — 22  sin(arccos(z)) = v1 — 22

sin(arctan(z)) = 1

Vo241

;2+1 cos(arctan(z)) =

tan(arccos(z)) =z~ 1 - (1 — w)%
tan(arcsin(z)) =z - (1 —x) 4
arsinh(z) = In (x +Vx2 4+ 1
arcosh(z) = In (w +vVz2 -1

artanh(z) = 1 -In (3£2), |z[ <1

-

arcoth(z) = 5 - ln(%) , lzl>1

sinh(2 - arcsinh(z)) = 2zvx2 — 1
sinh(arcosh(z)) = V22 —1; x>0
cosh(arsinh(z)) = Va2 + 1

Exam Question: Compute the Integral of f(x)

Let f(z) be a function with Fourier tfransform equal to:
A( = \/2# Compute the integral: /+oo f(z)dz =
=Y TET + w2 2 el o YD =

Solution: The Fourier transform is defined by

-~ 1 i —iwx
f(W):E/—oo f(z)e dx

. . ~ 1 too o
therefore in particular: atw =0:  f(0) = \/?/ f(@) - e % do
T J_ W—l

or equivalently we can compute the integral of:

= Ve \/71+w2

/+ f(z)dz = V27 - £(0

Exam Question: Fourier Series & find similar numerical series

Consider the function f(x) = |sin (Z)].
a) Show that it is periodic of period 2n. Foreach z € R :

an (52 = o ()] = on (3) -

b) Compute its Fourier series.
f(z)iseven = b, = 0. Forz € [0, 7] we have [sin (%)| = sin (£).

1 4 1 4 1 2
O(evzen)i/ f(x)dac=f/ sm( )dx—7-2=f
T Jo 2 ™ ™

o, (o0 2/ (@) cos(na)dz = E/W sin <£> cos(nz)dz =
T Jo 2

fl@+2m) =

2 2 (2n sin (5) sin(nz) + cos (%) cos(nw)) T 4 1
T 4n? — 1 0_ 7 4n? — 1
+oo 2 +oo
Fourier series: ag + 7;1 an cos(nz) = e Z 4n2 — - cos(nz)
1
©) Use the result fo find the numerical series: Z o =

f (=) is continuous everywhere = it comudes wrrh its Fourier series:

s1n<2)‘=§—7z4n2_ - cos(nz)

To calculate the above sum we want to get rid of cos(nz), which is
easily done in the point z = 0, in which cos(nz) = 1:

+oo
@zr=0: ====
v T Z471271

Ve € R:
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